|
| 1 | +# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. |
| 2 | +# |
| 3 | +# This source code is licensed under the BSD license found in the |
| 4 | +# LICENSE file in the root directory of this source tree. |
| 5 | +# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. |
| 6 | +# |
| 7 | +# This source code is licensed under the BSD license found in the |
| 8 | +# LICENSE file in the root directory of this source tree. |
| 9 | +from typing import Tuple |
| 10 | + |
| 11 | +import torch |
| 12 | +import torch.nn.functional as F |
| 13 | +from torch import nn |
| 14 | +from xformers_benchmark_utils import DTYPE2STR, benchmark_main_helper2, product_dict |
| 15 | + |
| 16 | +from torchao.sparsity.training import SemiSparseLinear |
| 17 | +from torchao.sparsity.training.autograd import semi_structured_sparsify |
| 18 | + |
| 19 | +min_run_time = 0.5 |
| 20 | +device = torch.device("cuda") |
| 21 | + |
| 22 | +CASES = list( |
| 23 | + product_dict( |
| 24 | + B_in_hidden_out_ft=[ |
| 25 | + # DINO ViT-L: lg + sm crops (patch16) |
| 26 | + (64 * 2 * (14 * 14 + 1) + 64 * 8 * (6 * 6 + 1), 1024, 1024 * 4, 1024), |
| 27 | + ], |
| 28 | + dtype=[torch.half], |
| 29 | + bias=[False], |
| 30 | + ) |
| 31 | +) |
| 32 | + |
| 33 | +class Mlp(nn.Module): |
| 34 | + LINEAR_CLS = nn.Linear |
| 35 | + |
| 36 | + def __init__( |
| 37 | + self, B_in_hidden_out_ft: Tuple[int, int, int, int], dtype, bias: bool, bw: bool |
| 38 | + ) -> None: |
| 39 | + B, in_ft, hid_ft, out_ft = B_in_hidden_out_ft |
| 40 | + super().__init__() |
| 41 | + self.label = "mlp" |
| 42 | + self.sub_label = ( |
| 43 | + f"{DTYPE2STR[dtype]} ({B},{in_ft},{hid_ft},{out_ft}){' b' if bias else ''}" |
| 44 | + ) |
| 45 | + self.fc1 = self.LINEAR_CLS(in_ft, hid_ft, bias=bias) |
| 46 | + self.act = nn.GELU() |
| 47 | + self.fc2 = self.LINEAR_CLS(hid_ft, out_ft, bias=bias) |
| 48 | + self.grad = torch.randn([B, out_ft], device="cuda", dtype=dtype) |
| 49 | + self.input = torch.randn( |
| 50 | + [B, in_ft], device="cuda", dtype=dtype, requires_grad=True |
| 51 | + ) |
| 52 | + self.out = self.input |
| 53 | + self.to("cuda").to(dtype) |
| 54 | + |
| 55 | + def forward(self, x): |
| 56 | + x = self.fc1(x) |
| 57 | + x = self.act(x) |
| 58 | + x = self.fc2(x) |
| 59 | + return x |
| 60 | + |
| 61 | + def fw(self): |
| 62 | + self.out = self.forward(self.input) |
| 63 | + |
| 64 | + def bw(self): |
| 65 | + self.out.backward(self.grad, retain_graph=True) |
| 66 | + |
| 67 | + |
| 68 | +class MlpAct24(Mlp): |
| 69 | + def fw(self): |
| 70 | + x = self.input |
| 71 | + x = self.fc1(x) |
| 72 | + x = semi_structured_sparsify(x) |
| 73 | + x = self.act(x) |
| 74 | + x = self.fc2(x) |
| 75 | + self.out = x |
| 76 | + |
| 77 | + |
| 78 | + |
| 79 | +class MlpW24(Mlp): |
| 80 | + LINEAR_CLS = SemiSparseLinear |
| 81 | + |
| 82 | + |
| 83 | +class MicrobenchmarkBase: |
| 84 | + def __init__( |
| 85 | + self, B_in_hidden_out_ft: Tuple[int, int, int, int], dtype, bias: bool, bw: bool |
| 86 | + ) -> None: |
| 87 | + B, in_ft, hid_ft, out_ft = B_in_hidden_out_ft |
| 88 | + super().__init__() |
| 89 | + self.label = "mlp" |
| 90 | + self.sub_label = ( |
| 91 | + f"{DTYPE2STR[dtype]} ({B},{in_ft},{hid_ft},{out_ft}){' b' if bias else ''}" |
| 92 | + ) |
| 93 | + self.input = torch.randn( |
| 94 | + [B, in_ft], device="cuda", dtype=dtype, requires_grad=True |
| 95 | + ) |
| 96 | + self.input_colMajor = self.input.t().contiguous().t() |
| 97 | + self.input_sp = semi_structured_sparsify(self.input) |
| 98 | + |
| 99 | + def bw(self) -> None: |
| 100 | + return None |
| 101 | + |
| 102 | + |
| 103 | +class MicrobenchmarkSparsify24(MicrobenchmarkBase): |
| 104 | + def fw(self) -> torch.Tensor: |
| 105 | + semi_structured_sparsify(self.input) |
| 106 | + return self.input |
| 107 | + |
| 108 | + |
| 109 | +class MicrobenchmarkInputClone(MicrobenchmarkBase): |
| 110 | + def fw(self) -> torch.Tensor: |
| 111 | + self.input.clone() |
| 112 | + return self.input |
| 113 | + |
| 114 | + |
| 115 | +functions = { |
| 116 | + "act24": MlpAct24, |
| 117 | + "dense": Mlp, |
| 118 | + "w24": MlpW24, |
| 119 | + "s24_inp_sparsify24": MicrobenchmarkSparsify24, |
| 120 | + "s24_inp_clone": MicrobenchmarkInputClone, |
| 121 | +} |
| 122 | +benchmark_main_helper2( |
| 123 | + "sp24_fwbw", |
| 124 | + fw=True, |
| 125 | + bw=True, |
| 126 | + cases=CASES, |
| 127 | + functions=functions, |
| 128 | + min_run_time=min_run_time, |
| 129 | +) |
0 commit comments