|
| 1 | +// Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +// All rights reserved. |
| 3 | +// |
| 4 | +// This source code is licensed under the license found in the |
| 5 | +// LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +#pragma once |
| 8 | + |
| 9 | +#if defined(__aarch64__) || defined(__ARM_NEON) |
| 10 | +#include <torchao/experimental/kernels/cpu/aarch64/embedding/embedding.h> |
| 11 | +#endif // defined(__aarch64__) || defined(__ARM_NEON) |
| 12 | + |
| 13 | +#include <torchao/experimental/ops/embedding_xbit/packed_weights_header.h> |
| 14 | +#include <torchao/experimental/ops/library.h> |
| 15 | +#include <torchao/experimental/ops/packed_weights_header.h> |
| 16 | +#include <torchao/experimental/ops/parallel.h> |
| 17 | + |
| 18 | +template <int weight_nbit> |
| 19 | +void check_embedding_inputs( |
| 20 | + const Tensor& packed_weight_qvals, |
| 21 | + int num_embeddings, |
| 22 | + int embedding_dim, |
| 23 | + const Tensor& weight_scales, |
| 24 | + const Tensor& weight_zeros, |
| 25 | + const Tensor& indices, |
| 26 | + int& group_size) { |
| 27 | + TORCHAO_CHECK( |
| 28 | + packed_weight_qvals.dim() == 1, "packed_weight_qvals must be 1D"); |
| 29 | +#ifdef USE_ATEN |
| 30 | + TORCHAO_CHECK( |
| 31 | + packed_weight_qvals.dtype() == torch::kInt8, |
| 32 | + "packed_weight_qvals must be byte"); |
| 33 | +#endif // USE_ATEN |
| 34 | + TORCHAO_CHECK( |
| 35 | + (embedding_dim * weight_nbit) % 8 == 0, |
| 36 | + "embedding_dim * weight_nbit must be a multiple of 8"); |
| 37 | + int packed_embedding_dim = (embedding_dim * weight_nbit) / 8; |
| 38 | + TORCHAO_CHECK( |
| 39 | + packed_weight_qvals.size(0) == |
| 40 | + (torchao::ops::PackedWeightsHeader::size() + |
| 41 | + (num_embeddings * packed_embedding_dim)), |
| 42 | + "packed_weight_qvals is not the correct size"); |
| 43 | + |
| 44 | + // Check header |
| 45 | + auto header = torchao::ops::PackedWeightsHeader::read( |
| 46 | + packed_weight_qvals.const_data_ptr()); |
| 47 | + TORCHAO_CHECK( |
| 48 | + header == |
| 49 | + torchao::ops::embedding_xbit::get_packed_weights_header_universal( |
| 50 | + weight_nbit, |
| 51 | + /*min_value_chunk_size=*/32, |
| 52 | + /*max_value_chunk_size=*/128), |
| 53 | + "packed_weights are not compatible with the kernel"); |
| 54 | + |
| 55 | +#ifdef USE_ATEN |
| 56 | + TORCHAO_CHECK( |
| 57 | + weight_scales.dtype() == torch::kFloat32, |
| 58 | + "weight_scales must be float32"); |
| 59 | +#endif // USE_ATEN |
| 60 | + TORCHAO_CHECK(weight_scales.dim() == 2, "weight_scales must be 2D"); |
| 61 | + TORCHAO_CHECK( |
| 62 | + weight_scales.size(0) == num_embeddings, |
| 63 | + "weight_scales must be same shape as packed_weight_qvals in dim0 (num_embeddings)"); |
| 64 | + int num_groups = weight_scales.size(1); |
| 65 | + TORCHAO_CHECK( |
| 66 | + num_groups >= 1, "weight_scales must be at least 1 in dim1 (num_groups)"); |
| 67 | + TORCHAO_CHECK( |
| 68 | + embedding_dim % num_groups == 0, |
| 69 | + "embedding_dim must be a multiple of num_groups"); |
| 70 | + group_size = embedding_dim / num_groups; |
| 71 | + TORCHAO_CHECK(group_size % 32 == 0, "group_size must be a multiple of 32"); |
| 72 | + |
| 73 | +#ifdef USE_ATEN |
| 74 | + TORCHAO_CHECK( |
| 75 | + weight_zeros.dtype() == torch::kInt8, "weight_zeros must be int8"); |
| 76 | +#endif // USE_ATEN |
| 77 | + TORCHAO_CHECK(weight_zeros.dim() == 2, "weight_zeros must be 2D"); |
| 78 | + TORCHAO_CHECK( |
| 79 | + weight_zeros.size(0) == weight_scales.size(0) && |
| 80 | + weight_zeros.size(1) == weight_scales.size(1), |
| 81 | + "zeros must be same shape as scales"); |
| 82 | + |
| 83 | + TORCHAO_CHECK(indices.dim() == 1, "indices must be 1D"); |
| 84 | + TORCHAO_CHECK( |
| 85 | + (indices.dtype() == Tensor_dtype_kInt32) || |
| 86 | + (indices.dtype() == Tensor_dtype_kInt64), |
| 87 | + "indices must be int32 or int64"); |
| 88 | +} |
| 89 | + |
| 90 | +#if defined(USE_ATEN) || defined(USE_EXECUTORCH) |
| 91 | +template <int weight_nbit> |
| 92 | +Tensor embedding_out_cpu( |
| 93 | + const Tensor& packed_weight_qvals, |
| 94 | + // TODO(T200095131): convert to |
| 95 | + // int64_t when supported by AOTI |
| 96 | + // Currently they are tensors with size |
| 97 | + // equal to (0, the int they wrap) |
| 98 | + const Tensor& num_embeddings_tensor, |
| 99 | + const Tensor& embedding_dim_tensor, |
| 100 | + const Tensor& weight_scales, |
| 101 | + const Tensor& weight_zeros, |
| 102 | + const Tensor& indices, |
| 103 | + Tensor& out) { |
| 104 | + int num_embeddings = num_embeddings_tensor.size(1); |
| 105 | + int embedding_dim = embedding_dim_tensor.size(1); |
| 106 | + int group_size; |
| 107 | + check_embedding_inputs<weight_nbit>( |
| 108 | + packed_weight_qvals, |
| 109 | + num_embeddings, |
| 110 | + embedding_dim, |
| 111 | + weight_scales, |
| 112 | + weight_zeros, |
| 113 | + indices, |
| 114 | + group_size); |
| 115 | + |
| 116 | + int num_out = indices.size(0); |
| 117 | + const int8_t* weight_zeros_ptr = weight_zeros.const_data_ptr<int8_t>(); |
| 118 | + |
| 119 | +#ifdef USE_ATEN |
| 120 | + TORCHAO_CHECK(out.dtype() == torch::kFloat32, "out must be float32"); |
| 121 | + out.resize_({num_out, embedding_dim}); |
| 122 | +#endif // USE_ATEN |
| 123 | + |
| 124 | +#ifdef USE_EXECUTORCH |
| 125 | + TORCHAO_CHECK(out.dim() == 2, "out must be 2D"); |
| 126 | + TORCHAO_CHECK(out.size(0) == num_out, "out shape is incorrect"); |
| 127 | + TORCHAO_CHECK(out.size(1) == embedding_dim, "out shape is incorrect"); |
| 128 | +#endif // USE_EXECUTORCH |
| 129 | + |
| 130 | + const int32_t* index32_ptr = nullptr; |
| 131 | + const int64_t* index64_ptr = nullptr; |
| 132 | + if (indices.dtype() == Tensor_dtype_kInt32) { |
| 133 | + index32_ptr = indices.const_data_ptr<int32_t>(); |
| 134 | + } else { |
| 135 | + TORCHAO_CHECK( |
| 136 | + indices.dtype() == Tensor_dtype_kInt64, |
| 137 | + "indices must be int32 or int64"); |
| 138 | + index64_ptr = indices.const_data_ptr<int64_t>(); |
| 139 | + } |
| 140 | + torchao::parallel_1d(0, num_out, [&](int64_t idx) { |
| 141 | + int index = -1; |
| 142 | + if (index32_ptr != nullptr) { |
| 143 | + index = index32_ptr[idx]; |
| 144 | + } else { |
| 145 | + index = index64_ptr[idx]; |
| 146 | + } |
| 147 | + TORCHAO_CHECK(index >= 0 && index < num_embeddings, "index out of bounds"); |
| 148 | +#if defined(__aarch64__) || defined(__ARM_NEON) |
| 149 | + torchao::kernels::cpu::aarch64::embedding::embedding<weight_nbit>( |
| 150 | + out.mutable_data_ptr<float>() + idx * embedding_dim, |
| 151 | + embedding_dim, |
| 152 | + group_size, |
| 153 | + packed_weight_qvals.const_data_ptr<int8_t>() + |
| 154 | + torchao::ops::PackedWeightsHeader::size(), |
| 155 | + weight_scales.const_data_ptr<float>(), |
| 156 | + weight_zeros_ptr, |
| 157 | + index); |
| 158 | +#else |
| 159 | + TORCHAO_CHECK(false, "Unsupported platform"); |
| 160 | +#endif // defined(__aarch64__) || defined(__ARM_NEON) |
| 161 | + }); |
| 162 | + |
| 163 | + return out; |
| 164 | +} |
| 165 | +#endif // defined(USE_ATEN) || defined(USE_EXECUTORCH) |
| 166 | + |
| 167 | +#ifdef USE_ATEN |
| 168 | +template <int weight_nbit> |
| 169 | +Tensor embedding_cpu( |
| 170 | + const Tensor& packed_weight_qvals, |
| 171 | + // TODO(T200095131): convert to |
| 172 | + // int64_t when supported by AOTI |
| 173 | + // Currently they are tensors with size |
| 174 | + // equal to (0, the int they wrap) |
| 175 | + const Tensor& num_embeddings_tensor, |
| 176 | + const Tensor& embedding_dim_tensor, |
| 177 | + const Tensor& weight_scales, |
| 178 | + const Tensor& weight_zeros, |
| 179 | + const Tensor& indices) { |
| 180 | + Tensor output_tensor = torch::empty({}, torch::kFloat32); |
| 181 | + embedding_out_cpu<weight_nbit>( |
| 182 | + packed_weight_qvals, |
| 183 | + num_embeddings_tensor, |
| 184 | + embedding_dim_tensor, |
| 185 | + weight_scales, |
| 186 | + weight_zeros, |
| 187 | + indices, |
| 188 | + output_tensor); |
| 189 | + return output_tensor; |
| 190 | +} |
| 191 | +#endif // USE_ATEN |
| 192 | + |
| 193 | +#ifdef USE_ATEN |
| 194 | +template <int weight_nbit> |
| 195 | +Tensor embedding_meta( |
| 196 | + const Tensor& packed_weight_qvals, |
| 197 | + // TODO(T200095131): convert to |
| 198 | + // int64_t when supported by AOTI |
| 199 | + // Currently they are tensors with size |
| 200 | + // equal to (0, the int they wrap) |
| 201 | + const Tensor& num_embeddings_tensor, |
| 202 | + const Tensor& embedding_dim_tensor, |
| 203 | + const Tensor& weight_scales, |
| 204 | + const Tensor& weight_zeros, |
| 205 | + const Tensor& indices) { |
| 206 | + int embedding_dim = embedding_dim_tensor.size(1); |
| 207 | + int num_out = indices.size(0); |
| 208 | + return torch::empty({num_out, embedding_dim}).to("meta"); |
| 209 | +} |
| 210 | +#endif // USE_ATEN |
| 211 | + |
| 212 | +#ifdef USE_ATEN |
| 213 | +template <int weight_nbit> |
| 214 | +Tensor pack_embedding_cpu(const Tensor& weight_qvals) { |
| 215 | + TORCHAO_CHECK(weight_qvals.dim() == 2, "weight_qvals must be 2D"); |
| 216 | + int num_embeddings = weight_qvals.size(0); |
| 217 | + int embedding_dim = weight_qvals.size(1); |
| 218 | + TORCHAO_CHECK( |
| 219 | + embedding_dim % 8 == 0, "embedding_dim must be a multiple of 8 to pack"); |
| 220 | + int packed_embedding_dim = embedding_dim * weight_nbit / 8; |
| 221 | + TORCHAO_CHECK( |
| 222 | + weight_qvals.dtype() == torch::kInt8, "weight_qvals must be int8"); |
| 223 | + |
| 224 | + auto out = torch::empty( |
| 225 | + torchao::ops::PackedWeightsHeader::size() + |
| 226 | + (num_embeddings * packed_embedding_dim)) |
| 227 | + .to(torch::kInt8); |
| 228 | + |
| 229 | + auto header = |
| 230 | + torchao::ops::embedding_xbit::get_packed_weights_header_universal( |
| 231 | + weight_nbit, |
| 232 | + /*min_value_chunk_size=*/32, |
| 233 | + /*max_value_chunk_size=*/128); |
| 234 | + header.write(out.mutable_data_ptr()); |
| 235 | + |
| 236 | + torchao::parallel_1d(0, num_embeddings, [&](int64_t idx) { |
| 237 | +#if defined(__aarch64__) || defined(__ARM_NEON) |
| 238 | + torchao::kernels::cpu::aarch64::embedding::pack_embedding_weight_qvals< |
| 239 | + weight_nbit>( |
| 240 | + out.mutable_data_ptr<int8_t>() + |
| 241 | + torchao::ops::PackedWeightsHeader::size(), |
| 242 | + embedding_dim, |
| 243 | + weight_qvals.const_data_ptr<int8_t>(), |
| 244 | + idx); |
| 245 | +#else |
| 246 | + TORCHAO_CHECK(false, "Unsupported platform"); |
| 247 | +#endif // defined(__aarch64__) || defined(__ARM_NEON) |
| 248 | + }); |
| 249 | + |
| 250 | + return out; |
| 251 | +} |
| 252 | +#endif // USE_ATEN |
| 253 | + |
| 254 | +#ifdef USE_ATEN |
| 255 | +template <int weight_nbit> |
| 256 | +Tensor pack_embedding_meta(const Tensor& weight_qvals) { |
| 257 | + TORCHAO_CHECK(weight_qvals.dim() == 2, "weight_qvals must be 2D"); |
| 258 | + int num_embeddings = weight_qvals.size(0); |
| 259 | + int embedding_dim = weight_qvals.size(1); |
| 260 | + TORCHAO_CHECK( |
| 261 | + embedding_dim % 8 == 0, "embedding_dim must be a multiple of 8 to pack"); |
| 262 | + int packed_embedding_dim = embedding_dim * weight_nbit / 8; |
| 263 | + return torch::empty( |
| 264 | + torchao::ops::PackedWeightsHeader::size() + |
| 265 | + (num_embeddings * packed_embedding_dim)) |
| 266 | + .to("meta"); |
| 267 | +} |
| 268 | +#endif // USE_ATEN |
0 commit comments