@@ -946,7 +946,7 @@ def test_workflow_e2e_numerics(self, config):
946
946
assert sqnr >= 16.5 , f"SQNR { sqnr } is too low"
947
947
948
948
@unittest .skipIf (not torch .cuda .is_available (), "Need CUDA available" )
949
- def test_ao_per_module_config_default (self ):
949
+ def test_module_fqn_to_config_default (self ):
950
950
config1 = Int4WeightOnlyConfig (group_size = 32 )
951
951
config2 = Int8WeightOnlyConfig ()
952
952
config = ModuleFqnToConfig ({"_default" : config1 , "linear2" : config2 })
@@ -960,7 +960,7 @@ def test_ao_per_module_config_default(self):
960
960
assert isinstance (model .linear2 .weight ._layout , PlainLayout )
961
961
962
962
@unittest .skipIf (not torch .cuda .is_available (), "Need CUDA available" )
963
- def test_ao_per_module_config_module_name (self ):
963
+ def test_module_fqn_to_config_module_name (self ):
964
964
config1 = Int4WeightOnlyConfig (group_size = 32 )
965
965
config2 = Int8WeightOnlyConfig ()
966
966
config = ModuleFqnToConfig ({"linear1" : config1 , "linear2" : config2 })
@@ -974,7 +974,7 @@ def test_ao_per_module_config_module_name(self):
974
974
assert isinstance (model .linear2 .weight ._layout , PlainLayout )
975
975
976
976
@unittest .skipIf (not TORCH_VERSION_AT_LEAST_2_6 , "Need torch 2.6+" )
977
- def test_ao_per_module_config_embedding_linear (self ):
977
+ def test_module_fqn_to_config_embedding_linear (self ):
978
978
weight_dtype = torch .int8
979
979
granularity = PerGroup (8 )
980
980
mapping_type = MappingType .SYMMETRIC
@@ -1006,7 +1006,7 @@ def test_ao_per_module_config_embedding_linear(self):
1006
1006
assert isinstance (model .linear .weight , LinearActivationQuantizedTensor )
1007
1007
1008
1008
@unittest .skipIf (not torch .cuda .is_available (), "Need CUDA available" )
1009
- def test_ao_per_module_config_skip (self ):
1009
+ def test_module_fqn_to_config_skip (self ):
1010
1010
config1 = Int4WeightOnlyConfig (group_size = 32 )
1011
1011
config = ModuleFqnToConfig ({"_default" : config1 , "linear2" : None })
1012
1012
model = ToyLinearModel ().cuda ().to (dtype = torch .bfloat16 )
0 commit comments