|
| 1 | +from pathlib import Path |
| 2 | +from tqdm import tqdm |
| 3 | +import json |
| 4 | +import fire |
| 5 | +import numpy as np |
| 6 | +from scipy import ndimage |
| 7 | +import matplotlib.pyplot as plt |
| 8 | +from datetime import datetime |
| 9 | +from server import file_bytes_to_image_tensor |
| 10 | +from server import show_anns |
| 11 | +from server import model_type_to_paths |
| 12 | +from server import MODEL_TYPES_TO_MODEL |
| 13 | +from server import masks_to_rle_dict |
| 14 | +from server import max_memory_allocated |
| 15 | +from io import BytesIO |
| 16 | +from torchao._models.sam2.utils.amg import rle_to_mask |
| 17 | +from torchao._models.sam2.utils.amg import area_from_rle |
| 18 | + |
| 19 | + |
| 20 | +def timestamped_print(*args, **kwargs): |
| 21 | + # Get the current timestamp |
| 22 | + timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") |
| 23 | + # Prepend the timestamp to the original print arguments |
| 24 | + print(f"[{timestamp}]", *args, **kwargs) |
| 25 | + |
| 26 | + |
| 27 | +# From https://github.com/pytorch-labs/segment-anything-fast/blob/e6aadeb86f3ae1f58c3f98e2a91e251716e0f2aa/experiments/data.py |
| 28 | +# All credit to vkuzo |
| 29 | +def _get_center_point(mask): |
| 30 | + """ |
| 31 | + This is a rudimentary version of https://arxiv.org/pdf/2304.02643.pdf, |
| 32 | + section D.1.Point Sampling |
| 33 | +
|
| 34 | + From the paper: "The first point is chosen deterministically as the point |
| 35 | + farthest from the object boundary." |
| 36 | +
|
| 37 | + The code below is an approximation of this. |
| 38 | +
|
| 39 | + First, we try to calculate the center of mass. If it's inside the mask, we |
| 40 | + stop here. |
| 41 | +
|
| 42 | + The centroid may be outside of the mask for some mask shapes. In this case |
| 43 | + we do a slow hack, specifically, we check for the |
| 44 | + minumum of the maximum distance from the boundary in four directions |
| 45 | + (up, right, down, left), and take the point with the maximum of these |
| 46 | + minimums. Note: this is not performant for large masks. |
| 47 | +
|
| 48 | + Returns the center point in (x, y) format |
| 49 | + """ |
| 50 | + |
| 51 | + # try the center of mass, keep it if it's inside the mask |
| 52 | + com_y, com_x = ndimage.center_of_mass(mask) |
| 53 | + com_y, com_x = int(round(com_y, 0)), int(round(com_x, 0)) |
| 54 | + if mask[com_y][com_x]: |
| 55 | + return (com_x, com_y) |
| 56 | + |
| 57 | + # if center of mass didn't work, do the slow manual approximation |
| 58 | + |
| 59 | + # up, right, down, left |
| 60 | + # TODO(future): approximate better by adding more directions |
| 61 | + distances_to_check_deg = [0, 90, 180, 270] |
| 62 | + |
| 63 | + global_min_max_distance = float('-inf') |
| 64 | + global_coords = None |
| 65 | + # For now, terminate early to speed up the calculation as long as |
| 66 | + # the point sample is gooe enough. This sacrifices the quality of point |
| 67 | + # sampling for speed. In the future we can make this more accurate. |
| 68 | + DISTANCE_GOOD_ENOUGH_THRESHOLD = 20 |
| 69 | + |
| 70 | + # Note: precalculating the bounding box could be somewhat |
| 71 | + # helpful, but checked the performance gain and it's not much |
| 72 | + # so leaving it out to keep the code simple. |
| 73 | + # Note: tried binary search instead of incrementing by one to |
| 74 | + # travel up/right/left/down, but that does not handle masks |
| 75 | + # with all shapes properly (there could be multiple boundaries). |
| 76 | + for row_idx in range(mask.shape[0]): |
| 77 | + for col_idx in range(mask.shape[1]): |
| 78 | + cur_point = mask[row_idx, col_idx] |
| 79 | + |
| 80 | + # skip points inside bounding box but outside mask |
| 81 | + if not cur_point: |
| 82 | + continue |
| 83 | + |
| 84 | + max_distances = [] |
| 85 | + for direction in distances_to_check_deg: |
| 86 | + # TODO(future) binary search instead of brute forcing it if we |
| 87 | + # need a speedup, with a cache it doesn't really matter though |
| 88 | + if direction == 0: |
| 89 | + # UP |
| 90 | + cur_row_idx = row_idx |
| 91 | + |
| 92 | + while cur_row_idx >= 0 and mask[cur_row_idx, col_idx]: |
| 93 | + cur_row_idx = cur_row_idx - 1 |
| 94 | + cur_row_idx += 1 |
| 95 | + distance = row_idx - cur_row_idx |
| 96 | + max_distances.append(distance) |
| 97 | + |
| 98 | + elif direction == 90: |
| 99 | + # RIGHT |
| 100 | + cur_col_idx = col_idx |
| 101 | + |
| 102 | + while cur_col_idx <= mask.shape[1] - 1 and \ |
| 103 | + mask[row_idx, cur_col_idx]: |
| 104 | + cur_col_idx += 1 |
| 105 | + cur_col_idx -= 1 |
| 106 | + distance = cur_col_idx - col_idx |
| 107 | + max_distances.append(distance) |
| 108 | + |
| 109 | + elif direction == 180: |
| 110 | + # DOWN |
| 111 | + cur_row_idx = row_idx |
| 112 | + while cur_row_idx <= mask.shape[0] - 1 and \ |
| 113 | + mask[cur_row_idx, col_idx]: |
| 114 | + cur_row_idx = cur_row_idx + 1 |
| 115 | + cur_row_idx -= 1 |
| 116 | + distance = cur_row_idx - row_idx |
| 117 | + max_distances.append(distance) |
| 118 | + |
| 119 | + elif direction == 270: |
| 120 | + # LEFT |
| 121 | + cur_col_idx = col_idx |
| 122 | + while cur_col_idx >= 0 and mask[row_idx, cur_col_idx]: |
| 123 | + cur_col_idx -= 1 |
| 124 | + cur_col_idx += 1 |
| 125 | + distance = col_idx - cur_col_idx |
| 126 | + max_distances.append(distance) |
| 127 | + |
| 128 | + min_max_distance = min(max_distances) |
| 129 | + if min_max_distance > global_min_max_distance: |
| 130 | + global_min_max_distance = min_max_distance |
| 131 | + global_coords = (col_idx, row_idx) |
| 132 | + if global_min_max_distance >= DISTANCE_GOOD_ENOUGH_THRESHOLD: |
| 133 | + break |
| 134 | + |
| 135 | + return global_coords |
| 136 | + |
| 137 | + |
| 138 | +# TODO: Create prompts |
| 139 | +# Get prompts for each mask and prompt for largest mask |
| 140 | +# Use those prompts as input for generate data |
| 141 | + |
| 142 | +# Create 3 images for each task type |
| 143 | +# amg: all masks without center point |
| 144 | +# sps: one mask with center point |
| 145 | +# mps: multiple masks with center points |
| 146 | + |
| 147 | + |
| 148 | +def main_docstring(): |
| 149 | + return f""" |
| 150 | + Args: |
| 151 | + checkpoint_path (str): Path to folder containing checkpoints from https://github.com/facebookresearch/sam2?tab=readme-ov-file#download-checkpoints |
| 152 | + model_type (str): Choose from one of {", ".join(MODEL_TYPES_TO_MODEL.keys())} |
| 153 | + input_path (str): Path to input image |
| 154 | + output_path (str): Path to output image |
| 155 | + """ |
| 156 | + |
| 157 | + |
| 158 | +def main( |
| 159 | + checkpoint_path, |
| 160 | + model_type, |
| 161 | + input_paths, |
| 162 | + amg_mask_folder, |
| 163 | + output_folder, |
| 164 | + output_format="png", |
| 165 | + verbose=False, |
| 166 | + fast=False, |
| 167 | + furious=False, |
| 168 | + load_fast="", |
| 169 | + overwrite=False, |
| 170 | + store_image=False, |
| 171 | + baseline=False, |
| 172 | +): |
| 173 | + # Input path validation |
| 174 | + input_paths = [ |
| 175 | + Path(input_path.strip()) |
| 176 | + for input_path in Path(input_paths).read_text().splitlines() |
| 177 | + ] |
| 178 | + # We include parent folder to reduce possible duplicates |
| 179 | + filenames = [ |
| 180 | + Path(input_path.parent.name) / Path(input_path.name) |
| 181 | + for input_path in input_paths |
| 182 | + ] |
| 183 | + if len(filenames) != len(set(filenames)): |
| 184 | + raise ValueError("Expected input_paths to have unique filenames.") |
| 185 | + if any(not input_path.is_file() for input_path in input_paths): |
| 186 | + raise ValueError("One of the input paths does not point to a file.") |
| 187 | + if not Path(amg_mask_folder).is_dir(): |
| 188 | + raise ValueError(f"Expected {amg_mask_folder} to be a directory.") |
| 189 | + rle_json_paths = [ |
| 190 | + Path(amg_mask_folder) |
| 191 | + / Path(filename.parent) |
| 192 | + / Path(filename.stem + "_masks.json") |
| 193 | + for filename in filenames |
| 194 | + ] |
| 195 | + for p in rle_json_paths: |
| 196 | + if not p.exists(): |
| 197 | + raise ValueError( |
| 198 | + f"Expected mask {p} to exist." |
| 199 | + ) |
| 200 | + |
| 201 | + # Output path validation |
| 202 | + if not Path(output_folder).is_dir(): |
| 203 | + raise ValueError(f"Expected {output_folder} to be a directory.") |
| 204 | + |
| 205 | + output_image_paths = [ |
| 206 | + (Path(output_folder) / filename).with_suffix("." + output_format) |
| 207 | + for filename in filenames |
| 208 | + ] |
| 209 | + if not overwrite and any(p.exists() for p in output_image_paths): |
| 210 | + raise ValueError( |
| 211 | + "Output image path already exists, but --overwrite was not specified." |
| 212 | + ) |
| 213 | + |
| 214 | + output_json_paths = [ |
| 215 | + Path(output_folder) |
| 216 | + / Path(filename.parent) |
| 217 | + / Path(filename.stem + "_meta.json") |
| 218 | + for filename in filenames |
| 219 | + ] |
| 220 | + if not overwrite and any(p.exists() for p in output_json_paths): |
| 221 | + raise ValueError( |
| 222 | + "Output json path already exists, but --overwrite was not specified." |
| 223 | + ) |
| 224 | + |
| 225 | + for input_path, filename, output_image_path, rle_json_path, output_json_path in tqdm( |
| 226 | + zip(input_paths, filenames, output_image_paths, rle_json_paths, output_json_paths), |
| 227 | + total=len(input_paths), |
| 228 | + ): |
| 229 | + input_bytes = bytearray(open(input_path, "rb").read()) |
| 230 | + image_tensor = file_bytes_to_image_tensor(input_bytes) |
| 231 | + if verbose: |
| 232 | + timestamped_print(f"Loading rle from {rle_json_path}") |
| 233 | + with open(rle_json_path, "r") as file: |
| 234 | + rle_dict = json.load(file) |
| 235 | + masks = {} |
| 236 | + for key in rle_dict: |
| 237 | + masks[key] = {'segmentation': rle_dict[key], |
| 238 | + 'area': area_from_rle(rle_dict[key]), |
| 239 | + 'center_point': _get_center_point(rle_to_mask(rle_dict[key]))} |
| 240 | + |
| 241 | + if verbose: |
| 242 | + timestamped_print( |
| 243 | + f"Generating mask annotations for input image {filename}." |
| 244 | + ) |
| 245 | + plt.figure( |
| 246 | + figsize=(image_tensor.shape[1] / 100.0, image_tensor.shape[0] / 100.0), |
| 247 | + dpi=100, |
| 248 | + ) |
| 249 | + plt.imshow(image_tensor) |
| 250 | + # seed for consistent coloring |
| 251 | + # Converts segmentation to binary mask for annotations |
| 252 | + show_anns(list(masks.values()), rle_to_mask, seed=42) |
| 253 | + plt.axis("off") |
| 254 | + plt.tight_layout() |
| 255 | + |
| 256 | + points = np.array([mask['center_point'] for mask in masks.values()]) |
| 257 | + ax = plt.gca() |
| 258 | + marker_size = 375 |
| 259 | + ax.scatter(points[:, 0], points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
| 260 | + |
| 261 | + buf = BytesIO() |
| 262 | + plt.savefig(buf, format=output_format) |
| 263 | + buf.seek(0) |
| 264 | + output_bytes = buf.getvalue() |
| 265 | + output_image_path.parent.mkdir(parents=False, exist_ok=True) |
| 266 | + |
| 267 | + if verbose: |
| 268 | + timestamped_print(f"Storing result image under {output_image_path}") |
| 269 | + with open(output_image_path, "wb") as file: |
| 270 | + file.write(output_bytes) |
| 271 | + |
| 272 | + # Back to RLE representation |
| 273 | + for key in masks: |
| 274 | + masks[key]['segmentation'] = rle_dict[key] |
| 275 | + |
| 276 | + if verbose: |
| 277 | + timestamped_print(f"Storing meta under {output_json_path}") |
| 278 | + |
| 279 | + with open(output_json_path, "w") as file: |
| 280 | + file.write(json.dumps(masks, indent=4)) |
| 281 | + |
| 282 | + plt.close() |
| 283 | + |
| 284 | + |
| 285 | +main.__doc__ = main_docstring() |
| 286 | +if __name__ == "__main__": |
| 287 | + fire.Fire(main) |
0 commit comments