Skip to content

fix: Issue in TS dimension-squeeze utility #2336

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion core/util/trt_util.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -216,7 +216,7 @@ nvinfer1::Dims squeezeDims(const nvinfer1::Dims& d, int pos, bool use_zeros, boo
// Replace all instances of -1, indicating dynamic dimension
// with 0, indicating copy the dimension from another tensor
// (Generally used for reshape operations)
if (use_zeros && d.d[i] == -1) {
if (use_zeros && d.d[i] == -1 && i < pos) {
dims.d[j] = 0;
// If zeros already exist in the dimensions (empty tensor),
// Replace all instances of 0, indicating empty dimension
Expand Down
52 changes: 46 additions & 6 deletions tests/py/ts/models/test_models.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,13 @@
import copy
import unittest
import torch_tensorrt as torchtrt
from typing import Dict

import custom_models as cm
import timm
import torch
import torch_tensorrt as torchtrt
import torchvision.models as models
import copy
import timm
import custom_models as cm
from typing import Dict
from utils import cosine_similarity, COSINE_THRESHOLD
from utils import COSINE_THRESHOLD, cosine_similarity


class TestModels(unittest.TestCase):
Expand Down Expand Up @@ -152,6 +153,45 @@ def test_resnet18_half(self):
msg=f"Resnet50 Half TRT outputs don't match with the original model. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}",
)

def test_aten_unbind_dynamic(self):
class ATenUnbindDynamic(torch.nn.Module):
def __init__(self) -> None:
super().__init__()

def forward(self, x):
x1, x2, x3 = x.unbind(1)
y = torch.cat([x1, x2, x3], dim=0)
return y

self.model = ATenUnbindDynamic().eval().to("cuda")
self.input = torch.randn((5, 3, 7, 64)).to("cuda")
self.scripted_model = torch.jit.script(self.model)

compile_spec = {
"inputs": [
torchtrt.Input(
min_shape=[1, 3, 1, 64],
opt_shape=[5, 3, 32, 64],
max_shape=[10, 3, 64, 64],
dtype=torch.float,
format=torch.contiguous_format,
)
],
"device": {
"device_type": torchtrt.DeviceType.GPU,
"gpu_id": 0,
},
"enabled_precisions": {torch.float},
"ir": "ts",
}

trt_mod = torchtrt.compile(self.scripted_model, **compile_spec)
cos_sim = cosine_similarity(self.model(self.input), trt_mod(self.input))
self.assertTrue(
cos_sim > COSINE_THRESHOLD,
msg=f"ATen Unbind Dynamic TRT outputs don't match with the original model. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}",
)


if __name__ == "__main__":
unittest.main()