|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "9242e111", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Prerequisites\n", |
| 9 | + "- `matplotlib`\n", |
| 10 | + "- `numpy`\n", |
| 11 | + "- functions\n", |
| 12 | + "- f-strings" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "markdown", |
| 17 | + "id": "0dac4919", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "# Learning outcomes\n", |
| 21 | + "- Use physical and chemical constants from a library.\n", |
| 22 | + "- Convert between common units of temperature, pressure and energy.\n", |
| 23 | + "- Perform a linear regression and plot the result.\n", |
| 24 | + "- Perform a non-linear least-squares fit and plot the result." |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "id": "ad0fb146-f9ef-4d6c-9a04-ce3a7ad3ddd2", |
| 30 | + "metadata": {}, |
| 31 | + "source": [ |
| 32 | + "# Scipy\n", |
| 33 | + "A scientific Python library that among other functions provides:\n", |
| 34 | + "- scientific constants\n", |
| 35 | + "- advanced linear regression\n", |
| 36 | + "- non-linear least squares curve fitting" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "id": "b33bf40b", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "## Use of scientific constants\n", |
| 45 | + "In any calculations or script you should define scientific constants with a clearly named variable rather than typing the number directly in your calculation. It is best practice to use the SI units for the constant." |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "id": "1731cb41", |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "# Ideal gas constant\n", |
| 56 | + "R = 8.314 # in J K^-1 mol^-1\n", |
| 57 | + "# The volume of 1 mol of ideal gas at a pressure of 1 bar and a temperature of 298 K.\n", |
| 58 | + "p = 100_000 # in Pa\n", |
| 59 | + "n = 1 # in mol\n", |
| 60 | + "T = 298 # in K\n", |
| 61 | + "print(f\"The volume of 1 mol of ideal gas at standard pressure and 298 K is {1000*n*R*T/p:.2f} L.\")" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "markdown", |
| 66 | + "id": "3e6b77c3", |
| 67 | + "metadata": {}, |
| 68 | + "source": [ |
| 69 | + "## Scientific constants with `scipy.constants`\n", |
| 70 | + "Import the `constants` package from the `scipy` library as a whole or import the specific constant(s) that you need." |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "id": "ec42bf6b", |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "from scipy.constants import R,c\n", |
| 81 | + "print(f\"The ideal gas constant is R = {R} J K^-1 mol^-1)\")\n", |
| 82 | + "print(f\"The speed of light is c = {c} m s^-1\")" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": null, |
| 88 | + "id": "62208e55", |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "import scipy.constants as c\n", |
| 93 | + "print(f\"The Boltzmann constant is k_B = {c.k} J K^-1\")\n", |
| 94 | + "print(f\"Planck's constant is h = {c.h} J s\")" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "markdown", |
| 99 | + "id": "59a13bef", |
| 100 | + "metadata": {}, |
| 101 | + "source": [ |
| 102 | + "## Exercise\n", |
| 103 | + "Use the constants from the `scipy.constants` package to convert the energy of 1 kJ mol<sup>-1</sup> into\n", |
| 104 | + "- eV\n", |
| 105 | + "- cm<sup>-1</sup>" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": null, |
| 111 | + "id": "5b030b98", |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [], |
| 114 | + "source": [] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "id": "451e15a4", |
| 119 | + "metadata": {}, |
| 120 | + "source": [ |
| 121 | + "You can find a whole list of physical constants included in the `scipy.constants` package at https://docs.scipy.org/doc/scipy/reference/constants.html" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "markdown", |
| 126 | + "id": "c51b2c98", |
| 127 | + "metadata": {}, |
| 128 | + "source": [ |
| 129 | + "## Advanced linear regression with `scipy.stats.linregress`\n", |
| 130 | + "The linear regression method provided by the `scipy` package provides some advanced statistical parameters, those that users may be familiar with from Microsoft Excel's LINEST:\n", |
| 131 | + "- Slope\n", |
| 132 | + "- Intercept\n", |
| 133 | + "- R value\n", |
| 134 | + "- P value\n", |
| 135 | + "- standard error in the slope\n", |
| 136 | + "- standard error in the intercept" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": null, |
| 142 | + "id": "36ba6ccf", |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "# Define an x,y dataset that follows a linear trend\n", |
| 147 | + "import numpy as np\n", |
| 148 | + "x = np.arange(0,10)\n", |
| 149 | + "y = (3.0 + np.random.rand()) * (x + np.random.rand(10))" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": null, |
| 155 | + "id": "5d715e20", |
| 156 | + "metadata": {}, |
| 157 | + "outputs": [], |
| 158 | + "source": [ |
| 159 | + "# Perform linear regression\n", |
| 160 | + "from scipy.stats import linregress\n", |
| 161 | + "result = linregress(x,y)\n", |
| 162 | + "print(f\"The linear regression parameters are: {result}\")" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "markdown", |
| 167 | + "id": "c0d7c80a", |
| 168 | + "metadata": {}, |
| 169 | + "source": [ |
| 170 | + "### You can use `matplotlib` to visualise the data and the linear regression\n", |
| 171 | + "Each of the elements of the fitting results can be accessed by appending the name, separated by a dot from the regression result e.g. `result.slope` for the slope or `result.intercept` for the intercept." |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "code", |
| 176 | + "execution_count": null, |
| 177 | + "id": "5ad05330", |
| 178 | + "metadata": {}, |
| 179 | + "outputs": [], |
| 180 | + "source": [ |
| 181 | + "import matplotlib.pyplot as plt\n", |
| 182 | + "plt.scatter(x,y,label=\"Data\")\n", |
| 183 | + "plt.plot(x,x*result.slope + result.intercept,label=\"Regression\")\n", |
| 184 | + "plt.title(\"Linear regression\")\n", |
| 185 | + "plt.xlabel(\"x\")\n", |
| 186 | + "plt.ylabel(\"y\")\n", |
| 187 | + "plt.legend()\n", |
| 188 | + "plt.show()" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "markdown", |
| 193 | + "id": "4b1acf38", |
| 194 | + "metadata": {}, |
| 195 | + "source": [ |
| 196 | + "## Exercise" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "markdown", |
| 201 | + "id": "4df88078", |
| 202 | + "metadata": {}, |
| 203 | + "source": [ |
| 204 | + "## Non-linear least-squares curve fitting with `scipy.optimize.curve_fit`\n", |
| 205 | + "While as Chemists we like to linearise data to then apply a linear regression, sometimes data is in a format that cannot be easily linearised and requires to fit the non-linear data with the appropriate function." |
| 206 | + ] |
| 207 | + }, |
| 208 | + { |
| 209 | + "cell_type": "code", |
| 210 | + "execution_count": null, |
| 211 | + "id": "e9a5c00a", |
| 212 | + "metadata": {}, |
| 213 | + "outputs": [], |
| 214 | + "source": [ |
| 215 | + "# Import required packages\n", |
| 216 | + "from scipy.optimize import curve_fit\n", |
| 217 | + "import numpy as np\n", |
| 218 | + "import matplotlib.pyplot as plt\n", |
| 219 | + "from scipy.constants import pi,k,u # Pi, Boltzmann constant, atomic mass unit" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "markdown", |
| 224 | + "id": "4cbc0b5c", |
| 225 | + "metadata": {}, |
| 226 | + "source": [ |
| 227 | + "### Maxwell-Boltzmann distribution\n", |
| 228 | + "We will determine the mean speed and temperature of argon." |
| 229 | + ] |
| 230 | + }, |
| 231 | + { |
| 232 | + "cell_type": "code", |
| 233 | + "execution_count": null, |
| 234 | + "id": "a3ecac55", |
| 235 | + "metadata": {}, |
| 236 | + "outputs": [], |
| 237 | + "source": [ |
| 238 | + "# Generate some data with noise\n", |
| 239 | + "T = 300 # in K\n", |
| 240 | + "steps = 50\n", |
| 241 | + "v = np.linspace(1,1000,steps)\n", |
| 242 | + "m = 39.948*u # mass of argon in atomic mass units\n", |
| 243 | + "F = ((m/(2*pi*k*T)**1.5 * 4*pi*v**2 * np.exp(-m*v**2/(2*k*T)))/1e9+np.random.rand(steps))*1e9\n", |
| 244 | + "plt.scatter(v,F)" |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "code", |
| 249 | + "execution_count": null, |
| 250 | + "id": "5cb2ddc1", |
| 251 | + "metadata": {}, |
| 252 | + "outputs": [], |
| 253 | + "source": [ |
| 254 | + "def func(v,T,m):\n", |
| 255 | + " \"\"\"Fitting function for a Maxwell-Boltzmann distribution.\"\"\"\n", |
| 256 | + " return m/(2*pi*k*T)**1.5 * 4*pi*v**2 * np.exp(-m*v**2/(2*k*T))\n", |
| 257 | + "\n" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "code", |
| 262 | + "execution_count": null, |
| 263 | + "id": "4030e65a", |
| 264 | + "metadata": {}, |
| 265 | + "outputs": [], |
| 266 | + "source": [ |
| 267 | + "# Performing the nonlinear fit which returns the fitting parameters \n", |
| 268 | + "# as a tuple (which is like an immutable list) and the covariance matrix.\n", |
| 269 | + "#\n", |
| 270 | + "# In the fit we assume the element also as an unknown i.e. as a fitting parameter together with the temperature.\n", |
| 271 | + "popt, pcov = curve_fit(func, v, F, p0=[250,1e-25])\n" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": null, |
| 277 | + "id": "33b4692d", |
| 278 | + "metadata": {}, |
| 279 | + "outputs": [], |
| 280 | + "source": [ |
| 281 | + "plt.scatter(v,F,label=\"data\")\n", |
| 282 | + "plt.plot(v,func(v,*popt),label=f\"fit with T = {popt[0]:.1f} K, m = {popt[1]/u:.1f} amu\")\n", |
| 283 | + "plt.title(\"Fitted Maxwell-Boltzmann distribution\")\n", |
| 284 | + "plt.xlabel(r\"speed / m s$^{-1}$\")\n", |
| 285 | + "plt.ylabel(\"Intensitiy / arb. units\")\n", |
| 286 | + "plt.legend()\n", |
| 287 | + "plt.show()" |
| 288 | + ] |
| 289 | + }, |
| 290 | + { |
| 291 | + "cell_type": "markdown", |
| 292 | + "id": "d39c119f", |
| 293 | + "metadata": {}, |
| 294 | + "source": [ |
| 295 | + "# TODO\n", |
| 296 | + "- Add example for unit conversion with `scipy.constants`\n", |
| 297 | + "- Add exercises to all sections (unit conversion, linear regression possibly based on first linearising data, non-linear fit)\n", |
| 298 | + "- add some questions / quizzes\n", |
| 299 | + "- add a few debugging examples where suitable" |
| 300 | + ] |
| 301 | + }, |
| 302 | + { |
| 303 | + "cell_type": "markdown", |
| 304 | + "id": "a73b7e31", |
| 305 | + "metadata": {}, |
| 306 | + "source": [] |
| 307 | + } |
| 308 | + ], |
| 309 | + "metadata": { |
| 310 | + "kernelspec": { |
| 311 | + "display_name": ".venv", |
| 312 | + "language": "python", |
| 313 | + "name": "python3" |
| 314 | + }, |
| 315 | + "language_info": { |
| 316 | + "codemirror_mode": { |
| 317 | + "name": "ipython", |
| 318 | + "version": 3 |
| 319 | + }, |
| 320 | + "file_extension": ".py", |
| 321 | + "mimetype": "text/x-python", |
| 322 | + "name": "python", |
| 323 | + "nbconvert_exporter": "python", |
| 324 | + "pygments_lexer": "ipython3", |
| 325 | + "version": "3.11.2" |
| 326 | + } |
| 327 | + }, |
| 328 | + "nbformat": 4, |
| 329 | + "nbformat_minor": 5 |
| 330 | +} |
0 commit comments