@@ -58,9 +58,10 @@ def sb01bd(n,m,np,alpha,A,B,w,dico,tol=0.0,ldwork=None):
58
58
:= 'C': continuous-time system;
59
59
:= 'D': discrete-time system.
60
60
tol : float, optional
61
- The absolute tolerance level below which the elements of A or B are
62
- considered zero (used for controllability tests).
63
- If tol <= 0 the default value is used.
61
+ The absolute tolerance level below which the elements of A or B are
62
+ considered zero (used for controllability tests).
63
+ If tol <= 0 the default value is used.
64
+ Default is `0.0`.
64
65
ldwork : int, optional
65
66
The length of the cache array. The default value is
66
67
max(1,5*m,5*n,2*n+4*m), for optimum performance it should be larger.
@@ -128,7 +129,6 @@ def sb01bd(n,m,np,alpha,A,B,w,dico,tol=0.0,ldwork=None):
128
129
129
130
Example
130
131
-------
131
-
132
132
>>> import numpy as np
133
133
>>> import slycot
134
134
>>> A = np.array([[0, 1, 0], [0, 0, 1], [-2, 1, 3]])
@@ -281,8 +281,6 @@ def sb02md(n,A,G,Q,dico,hinv='D',uplo='U',scal='N',sort='S',ldwork=None):
281
281
282
282
Raises
283
283
------
284
- SlycotParameterError
285
- :info = -i: the i-th argument had an illegal value;
286
284
SlycotArithmeticError
287
285
:info = 1:
288
286
Matrix A is (numerically) singular in discrete-
@@ -304,7 +302,6 @@ def sb02md(n,A,G,Q,dico,hinv='D',uplo='U',scal='N',sort='S',ldwork=None):
304
302
305
303
Example
306
304
-------
307
-
308
305
>>> import numpy as np
309
306
>>> import slycot
310
307
>>> A = np.array([[0, 1], [0, 0]])
@@ -622,7 +619,6 @@ def sb02od(n,m,A,B,Q,R,dico,p=None,L=None,fact='N',uplo='U',sort='S',tol=0.0,ldw
622
619
623
620
Example
624
621
-------
625
-
626
622
>>> import numpy as np
627
623
>>> import slycot
628
624
>>> A = np.array([[0, 1], [0, 0]])
@@ -905,7 +901,7 @@ def sb03od(n,m,A,Q,B,dico,fact='N',trans='N',ldwork=None):
905
901
For optimum performance ldwork should sometimes be larger.
906
902
907
903
Returns
908
- _______
904
+ -------
909
905
U : (n, n) ndarray
910
906
The leading n-by-n part of this array contains
911
907
the upper triangular Cholesky factor U of the solution
@@ -2206,6 +2202,7 @@ def sg02ad(dico,jobb,fact,uplo,jobl,scal,sort,acc,N,M,P,A,E,B,Q,R,L,ldwork=None,
2206
2202
LDR >= MAX(1,M) if JOBB = 'B' and FACT = 'N' or 'C';
2207
2203
LDR >= MAX(1,P) if JOBB = 'B' and FACT = 'D' or 'B';
2208
2204
LDR >= 1 if JOBB = 'G'.
2205
+
2209
2206
L : (n, M) array_like
2210
2207
If JOBL = 'N' and JOBB = 'B', the leading N-by-M part of
2211
2208
this array must contain the cross weighting matrix L.
@@ -2217,6 +2214,7 @@ def sg02ad(dico,jobb,fact,uplo,jobl,scal,sort,acc,N,M,P,A,E,B,Q,R,L,ldwork=None,
2217
2214
2218
2215
LDWORK >= MAX(7*(2*N+1)+16,16*N), if JOBB = 'G';
2219
2216
LDWORK >= MAX(7*(2*N+1)+16,16*N,2*N+M,3*M), if JOBB = 'B'.
2217
+
2220
2218
For optimum performance LDWORK should be larger.
2221
2219
Default: ``max(7*(2*n+1)+16,16*n)``
2222
2220
tol : float, optional
@@ -2432,7 +2430,7 @@ def sg03bd(n,m,A,E,Q,Z,B,dico,fact='N',trans='N',ldwork=None):
2432
2430
than one).
2433
2431
2434
2432
Parameters
2435
- __________
2433
+ ----------
2436
2434
n : int
2437
2435
The order of the matrix A. n >= 0.
2438
2436
m : int
@@ -2495,11 +2493,13 @@ def sg03bd(n,m,A,E,Q,Z,B,dico,fact='N',trans='N',ldwork=None):
2495
2493
on entry or not:
2496
2494
:= 'N': Factorization is not supplied;
2497
2495
:= 'F': Factorization is supplied.
2496
+ Default is 'N'.
2498
2497
trans : {'N', 'T'}, optional
2499
2498
Specifies whether the transposed equation is to be solved
2500
2499
or not:
2501
2500
:= 'N': op(A) = A, op(E) = E;
2502
2501
:= 'T': op(A) = A**T, op(E) = E**T.
2502
+ Default is 'N'.
2503
2503
ldwork : int, optional
2504
2504
The dimension of the array dwork::
2505
2505
@@ -2508,7 +2508,7 @@ def sg03bd(n,m,A,E,Q,Z,B,dico,fact='N',trans='N',ldwork=None):
2508
2508
For good performance, ldwork should be larger.
2509
2509
2510
2510
Returns
2511
- _______
2511
+ -------
2512
2512
U : (n, n) ndarray
2513
2513
The leading n-by-b part of this array contains
2514
2514
the Cholesky factor U of the solution matrix X of the
@@ -2521,6 +2521,7 @@ def sg03bd(n,m,A,E,Q,Z,B,dico,fact='N',trans='N',ldwork=None):
2521
2521
If INFO = 0, 3, 5, 6, or 7, then
2522
2522
((j), j=1,...,n, are the
2523
2523
eigenvalues of the matrix pencil A - lambda * E.
2524
+ Default is None.
2524
2525
2525
2526
Raises
2526
2527
------
@@ -2647,7 +2648,7 @@ def sb10fd(n,m,np,ncon,nmeas,gamma,A,B,C,D,tol=0.0,ldwork=None):
2647
2648
whose reciprocal condition numbers are less than tol are
2648
2649
not allowed. If tol <= 0, then a default value equal to
2649
2650
sqrt(eps) is used, where eps is the relative machine
2650
- precision.
2651
+ precision. Default is `0.0`.
2651
2652
ldwork : int, optional
2652
2653
The dimension of the cache array::
2653
2654
@@ -2683,7 +2684,7 @@ def sb10fd(n,m,np,ncon,nmeas,gamma,A,B,C,D,tol=0.0,ldwork=None):
2683
2684
2684
2685
if the default (None) value is used, the size for good performance
2685
2686
is automatically used, when ldwork is set to zero, the minimum
2686
- cache size will be used.
2687
+ cache size will be used. Default is None.
2687
2688
2688
2689
Returns
2689
2690
-------
0 commit comments