Skip to content

Latest commit

 

History

History
375 lines (242 loc) · 10.2 KB

advanced_examples.rst

File metadata and controls

375 lines (242 loc) · 10.2 KB

Advanced Examples

Optimize Transformations

Here are a few tricks to try out if you want to optimize your transformations.

Repeated transformations

.. versionadded:: 2.1.0

If you use the same transform, using the :class:`pyproj.transformer.Transformer` can help optimize your transformations.

import numpy
from pyproj import Transformer, transform

transformer = Transformer.from_crs(2263, 4326)
x_coords = numpy.random.randint(80000, 120000)
y_coords = numpy.random.randint(200000, 250000)

Example with :func:`pyproj.transformer.transform`:

transform(2263, 4326, x_coords, y_coords)

Results: 160 ms ± 3.68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Example with :class:`pyproj.transformer.Transformer`:

transformer.transform(x_coords, y_coords)

Results: 6.32 µs ± 49.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Transforming with the same projections

pyproj skips noop transformations.

Transformation Group

.. versionadded:: 2.3.0

The :class:`pyproj.transformer.TransformerGroup` provides both available transformations as well as missing transformations.

  1. Helpful if you want to use an alternate transformation and have a good reason for it.
>>> from pyproj.transformer import TransformerGroup
>>> trans_group = TransformerGroup("EPSG:4326","EPSG:2964")
>>> trans_group
<TransformerGroup: best_available=True>
- transformers: 8
- unavailable_operations: 1
>>> trans_group.best_available
True
>>> trans_group.transformers[0].transform(66, -153)
(149661.2825058747, 5849322.174897663)
>>> trans_group.transformers[1].transform(66, -153)
(149672.928811047, 5849311.372139239)
>>> trans_group.transformers[2].transform(66, -153)
(149748.32734832275, 5849274.621409136)
  1. Helpful if want to check that the best possible transformation exists. And if not, how to get the missing grid.
>>> from pyproj.transformer import TransformerGroup
>>> tg = TransformerGroup("EPSG:4326", "+proj=aea +lat_0=50 +lon_0=-154 +lat_1=55 +lat_2=65 +x_0=0 +y_0=0 +datum=NAD27 +no_defs +type=crs +units=m", always_xy=True)
UserWarning: Best transformation is not available due to missing Grid(short_name=ntv2_0.gsb, full_name=, package_name=proj-datumgrid-north-america, url=https://download.osgeo.org/proj/proj-datumgrid-north-america-latest.zip, direct_download=True, open_license=True, available=False)
f"{operation.grids[0]!r}"
>>> tg
<TransformerGroup: best_available=False>
- transformers: 37
- unavailable_operations: 41
>>> tg.transformers[0].description
'axis order change (2D) + Inverse of NAD27 to WGS 84 (3) + axis order change (2D) + unknown'
>>> tg.unavailable_operations[0].name
'Inverse of NAD27 to WGS 84 (33) + axis order change (2D) + unknown'
>>> tg.unavailable_operations[0].grids[0].url
'https://download.osgeo.org/proj/proj-datumgrid-north-america-latest.zip'

Area of Interest

.. versionadded:: 2.3.0

Depending on the location of your transformation, using the area of interest may impact which transformation operation is selected in the transformation.

>>> from pyproj.transformer import Transformer, AreaOfInterest
>>> transformer = Transformer.from_crs("EPSG:4326", "EPSG:2694")
>>> transformer
<Concatenated Operation Transformer: pipeline>
Description: Inverse of Pulkovo 1995 to WGS 84 (2) + 3-degree Gauss-Kruger zone 60
Area of Use:
- name: Russia
- bounds: (18.92, 39.87, -168.97, 85.2)
>>> transformer = Transformer.from_crs(
...     "EPSG:4326",
...     "EPSG:2694",
...     area_of_interest=AreaOfInterest(-136.46, 49.0, -60.72, 83.17),
... )
>>> transformer
<Concatenated Operation Transformer: pipeline>
Description: Inverse of NAD27 to WGS 84 (13) + Alaska Albers
Area of Use:
- name: Canada - NWT; Nunavut; Saskatchewan
- bounds: (-136.46, 49.0, -60.72, 83.17)

Promote CRS to 3D

.. versionadded:: 3.1


In PROJ 6+ you need to explicitly change your CRS to 3D if you have 2D CRS and you want the ellipsoidal height taken into account.

>>> from pyproj import CRS, Transformer
>>> transformer = Transformer.from_crs("EPSG:4326", "EPSG:2056", always_xy=True)
>>> transformer.transform(8.37909, 47.01987, 1000)
(2671499.8913080636, 1208075.1135782297, 1000.0)
>>> transformer_3d = Transformer.from_crs(
...     CRS("EPSG:4326").to_3d(),
...     CRS("EPSG:2056").to_3d(),
...     always_xy=True,
...)
>>> transformer_3d.transform(8.37909, 47.01987, 1000)
(2671499.8913080636, 1208075.1135782297, 951.4265527743846)

Demote CRS to 2D

.. versionadded:: 3.6


With the need for explicit 3D CRS since PROJ 6+, one might need to retrieve their 2D version, for example to create another 3D CRS compound between a 2D CRS and a vertical CRS.

>>> from pyproj import CRS, Transformer
>>> from pyproj.crs import CompoundCRS
>>> src_crs = CRS("EPSG:4979") # Any 3D CRS, here the 3D WGS 84
>>> vert_crs = CRS("EPSG:5773") # Any vertical CRS, here the EGM96 geoid
>>> dst_crs = CompoundCRS(src_crs.name + vert_crs.name, components=[src_crs.to_2d(), vert_crs])
>>> transformer_3d = Transformer.from_crs(src_crs, dst_crs, always_xy=True)
>>> transformer_3d.transform(8.37909, 47.01987, 1000)
(8.37909, 47.01987, 951.7851086745321)

Projected CRS Bounds

.. versionadded:: 3.1

The boundary of the CRS is given in geographic coordinates. This is the recommended method for calculating the projected bounds.

>>> from pyproj import CRS, Transformer
>>> crs = CRS("EPSG:3857")
>>> transformer = Transformer.from_crs(crs.geodetic_crs, crs, always_xy=True)
>>> transformer.transform_bounds(*crs.area_of_use.bounds)
(-20037508.342789244, -20048966.104014594, 20037508.342789244, 20048966.104014594)

Multithreading

As of version 3.1, these objects are thread-safe:

If you have pyproj<3.1, you will need to create the object within the thread that uses it.

Here is a simple demonstration:

import concurrent.futures

from pyproj import Transformer


def transform_point(point):
    transformer = Transformer.from_crs(4326, 3857)
    return transformer.transform(point, point * 2)


with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
    for result in executor.map(transform_point, range(5)):
        print(result)

Optimizing Single-Threaded Applications

If you have a single-threaded application that generates many objects, enabling the use of the global context can provide performance enhancements.

For information about using the global context, see: :ref:`global_context`

Here is an example where enabling the global context can help:

import pyproj

codes = pyproj.get_codes("EPSG", pyproj.enums.PJType.PROJECTED_CRS, False)
crs_list = [pyproj.CRS.from_epsg(code) for code in codes]

Caching pyproj objects

If you are likely to re-create pyproj objects such as :class:`pyproj.transformer.Transformer` or :class:`pyproj.crs.CRS`, using a cache can help reduce the cost of re-creating the objects.

Transformer

from functools import lru_cache

from pyproj import Transformer

TransformerFromCRS = lru_cache(Transformer.from_crs)

Transformer.from_crs(2263, 4326)  # no cache
TransformerFromCRS(2263, 4326)  # cache

Try it:

from timeit import timeit

timeit(
    "CachedTransformer(2263, 4326)",
    setup=(
        "from pyproj import Transformer; "
        "from functools import lru_cache; "
        "CachedTransformer = lru_cache(Transformer.from_crs)"
    ),
    number=1000000,
)

timeit(
    "Transformer.from_crs(2263, 4326)",
    setup=("from pyproj import Transformer"),
    number=100,
)

Without the cache, it takes around 2 seconds to do 100 iterations. With the cache, it takes 0.1 seconds to do 1 million iterations.

CRS Example

from functools import lru_cache

from pyproj import CRS

CachedCRS = lru_cache(CRS)

crs = CRS(4326)  # no cache
crs = CachedCRS(4326)  # cache

Try it:

from timeit import timeit

timeit(
    "CachedCRS(4326)",
    setup=(
        "from pyproj import CRS; "
        "from functools import lru_cache; "
        "CachedCRS = lru_cache(CRS)"
    ),
    number=1000000,
)

timeit(
    "CRS(4326)",
    setup=("from pyproj import CRS"),
    number=1000,
)

Without the cache, it takes around 1 seconds to do 1000 iterations. With the cache, it takes 0.1 seconds to do 1 million iterations.

Debugging Internal PROJ

.. versionadded:: 3.0.0

To get more debugging information from the internal PROJ code:

  1. Set the :envvar:`PROJ_DEBUG` environment variable to the desired level.

  2. Activate logging in pyproj with the devel DEBUG:

    More information available here: https://docs.python.org/3/howto/logging.html

    Here are examples to get started.

    Add handler to the pyproj logger:

    import logging
    
    console_handler = logging.StreamHandler()
    formatter = logging.Formatter("%(levelname)s:%(message)s")
    console_handler.setFormatter(formatter)
    logger = logging.getLogger("pyproj")
    logger.addHandler(console_handler)
    logger.setLevel(logging.DEBUG)

    Activate default logging config:

    import logging
    
    logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.DEBUG)