@@ -101,9 +101,9 @@ def output_var(self):
101101 def _generate_and_preprocess_model_data ( # type: ignore
102102 self , X : Union [pd .DataFrame , pd .Series ], y : Union [pd .Series , np .ndarray ]
103103 ) -> None :
104- """
105- Applies preprocessing to the data before fitting the model.
106- if validate is True, it will check if the data is valid for the model.
104+ """Applies preprocessing to the data before fitting the model.
105+
106+ If validate is True, it will check if the data is valid for the model.
107107 sets self.model_coords based on provided dataset
108108
109109 Parameters
@@ -390,6 +390,7 @@ def build_model(
390390 )
391391
392392 mu_var = intercept + channel_contributions .sum (axis = - 1 )
393+
393394 if (
394395 self .control_columns is not None
395396 and len (self .control_columns ) > 0
@@ -417,6 +418,7 @@ def build_model(
417418 )
418419
419420 mu_var += control_contributions .sum (axis = - 1 )
421+
420422 if (
421423 hasattr (self , "fourier_columns" )
422424 and self .fourier_columns is not None
@@ -494,10 +496,12 @@ def channel_contributions_forward_pass(
494496 self , channel_data : npt .NDArray [np .float_ ]
495497 ) -> npt .NDArray [np .float_ ]:
496498 """Evaluate the channel contribution for a given channel data and a fitted model, ie. the forward pass.
499+
497500 Parameters
498501 ----------
499502 channel_data : array-like
500503 Input channel data. Result of all the preprocessing steps.
504+
501505 Returns
502506 -------
503507 array-like
@@ -753,7 +757,7 @@ class DelayedSaturatedMMM(
753757 from pymc_marketing.mmm import DelayedSaturatedMMM
754758
755759 data_url = "https://raw.githubusercontent.com/pymc-labs/pymc-marketing/main/datasets/mmm_example.csv"
756- data = pd.read_csv(data_url, parse_dates=[' date_week' ])
760+ data = pd.read_csv(data_url, parse_dates=[" date_week" ])
757761
758762 mmm = DelayedSaturatedMMM(
759763 date_column="date_week",
@@ -833,6 +837,7 @@ def channel_contributions_forward_pass(
833837 ) -> npt .NDArray [np .float_ ]:
834838 """Evaluate the channel contribution for a given channel data and a fitted model, ie. the forward pass.
835839 We return the contribution in the original scale of the target variable.
840+
836841 Parameters
837842 ----------
838843 channel_data : array-like
@@ -855,7 +860,8 @@ def channel_contributions_forward_pass(
855860 def get_channel_contributions_forward_pass_grid (
856861 self , start : float , stop : float , num : int
857862 ) -> DataArray :
858- """Generate a grid of scaled channel contributions for a given grid of share values.
863+ """Generate a grid of scaled channel contributions for a given grid of shared values.
864+
859865 Parameters
860866 ----------
861867 start : float
@@ -914,6 +920,7 @@ def plot_channel_contributions_grid(
914920 absolute_xrange : bool, optional
915921 If True, the x-axis is in absolute values (input units), otherwise it is in
916922 relative percentage values, by default False.
923+
917924 Returns
918925 -------
919926 plt.Figure
0 commit comments