-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathwandb_train4promptkt.py
398 lines (352 loc) · 12.9 KB
/
wandb_train4promptkt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import argparse
import json
import torch
torch.set_num_threads(4)
from torch.optim import SGD, Adam
import copy
from pykt.models import train_model4promptkt, evaluate, init_model4promptkt, load_model4promptkt
from pykt.utils import set_seed, debug_print
from pykt.datasets import init_dataset4train
import datetime
import os
import torch.distributed as dist
def init_process():
"""初始化进程组"""
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
init_process()
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
device = "cpu" if not torch.cuda.is_available() else "cuda"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:2"
local_rank = 0
node_rank = 0
def rank0_print(*args):
if local_rank == 0:
print(*args)
def save_config(train_config, model_config, data_config, params, save_dir, args=None):
# print(f"type_args:{type(args)}")
if args:
d = {
"train_config": train_config,
"model_config": model_config,
"data_config": data_config,
"params": params,
"train_args": vars(args),
}
else:
d = {
"train_config": train_config,
"model_config": model_config,
"data_config": data_config,
"params": params,
}
save_path = os.path.join(save_dir, "config.json")
with open(save_path, "w") as fout:
json.dump(d, fout)
def main(params, args=None):
global local_rank, node_rank
local_rank = args.local_rank
node_rank = int(os.environ["RANK"])
project_name = args.project_name
# local_rank = os.environ.get('LOCAL_RANK') # args.local_rank
# print(f"local_rank====",local_rank)
torch.cuda.set_device(local_rank)
if "use_wandb" not in params:
params["use_wandb"] = 1
if params["use_wandb"] == 1 and local_rank == 0 and node_rank == 0:
import wandb
wandb.init(project=project_name)
use_wandb = True
else:
use_wandb = False
# wandb.init()
set_seed(params["seed"])
model_name, dataset_name, fold, emb_type, save_dir, re_mapping = (
params["model_name"],
params["dataset_name"],
params["fold"],
params["emb_type"],
params["save_dir"],
params["re_mapping"],
)
re_mapping = False if re_mapping == "0" else True
print(f"re_mapping:{re_mapping}")
with open("../configs/kt_config.json") as f:
config = json.load(f)
train_config = config["train_config"]
if model_name in ["promptkt", "unikt"]:
seqlen = params["seq_len"]
train_config["seq_len"] = seqlen
if seqlen == 1024:
if params["d_model"] <= 1024:
train_config["batch_size"] = 16 ## because of OOM
else:
train_config["batch_size"] = 16 ## because of OOM
elif seqlen == 200:
if params["d_model"] > 2560:
train_config["batch_size"] = 32 ## because of OOM
elif params["d_model"] > 1536 and params["d_model"] <= 2560:
train_config["batch_size"] = 160 ## because of OOM
elif params["d_model"] > 1024 and params["d_model"] <= 1536:
train_config["batch_size"] = 640 ## because of OOM
# train_config["batch_size"] = (
# args.global_bs // args.num_gpus // args.num_workers
# )
else:
train_config["batch_size"] = 1280 # 512
# train_config["batch_size"] = (
# args.global_bs // args.num_gpus // args.num_workers
# )
if args.pretrain_path != "" and args.train_mode == "ft":
# if args.dataset_name in ["peiyou", "bridge2algebra2006"]:
train_config["batch_size"] = (
512 // args.num_gpus // args.num_workers
)
# else:
# train_config["batch_size"] = 512
else: # seqlen = 512
train_config["batch_size"] = 32 ## because of OOM
model_config = copy.deepcopy(params)
if model_name in ["promptkt", "unikt"]:
for key in [
"model_name",
"dataset_name",
"emb_type",
"save_dir",
"fold",
"seed",
"train_ratio",
"not_select_dataset",
]:
del model_config[key]
if "batch_size" in params:
train_config["batch_size"] = params["batch_size"]
if "num_epochs" in params:
train_config["num_epochs"] = params["num_epochs"]
# model_config = {"d_model": params["d_model"], "n_blocks": params["n_blocks"], "dropout": params["dropout"], "d_ff": params["d_ff"]}
batch_size, num_epochs, optimizer = (
train_config["batch_size"],
train_config["num_epochs"],
train_config["optimizer"],
)
with open("../configs/data_config.json") as fin:
data_config = json.load(fin)
# if 'maxlen' in data_config[dataset_name]:#prefer to use the maxlen in data config
# train_config["seq_len"] = data_config[dataset_name]['maxlen']
seq_len = train_config["seq_len"]
rank0_print("Start init data")
rank0_print(dataset_name, model_name, data_config, fold, batch_size)
if model_name not in ["simplekt_sr", "parkt", "promptkt", "simplekt", "unikt"]:
train_loader, valid_loader, curtrain = init_dataset4train(
dataset_name, model_name, data_config, fold, batch_size
)
# print(f"curtrain:{len(curtrain)}")
elif model_name in ["promptkt", "unikt"]:
not_select_dataset = params["not_select_dataset"]
if not_select_dataset == "all":
not_select_dataset = None
train_loader, valid_loader = init_dataset4train(
dataset_name,
model_name,
data_config,
fold,
batch_size,
args=args,
not_select_dataset=not_select_dataset,
re_mapping=re_mapping,
)
params_str = "_".join(
[
str(v)
for k, v in params.items()
if not k in ["other_config", "pretrain_path", "pretrain_epoch"]
]
)
rank0_print(f"params: {params}, params_str: {params_str}")
if params["add_uuid"] == 1 and params["use_wandb"] == 1:
import uuid
# if not model_name in ['saint','saint++']:
params_str = params_str + f"_{ str(uuid.uuid4())}"
ckpt_path = os.path.join(save_dir, params_str)
if not os.path.isdir(ckpt_path) and local_rank == 0 and node_rank == 0:
os.makedirs(ckpt_path)
# 不在0号卡不保存
# if model_name in ["unikt", "promptkt"] and local_rank != 0 and node_rank != 0:
# ckpt_path = None
rank0_print(
f"Start training model: {model_name}, embtype: {emb_type}, save_dir: {ckpt_path}, dataset_name: {dataset_name}"
)
rank0_print(f"model_config: {model_config}")
rank0_print(f"train_config: {train_config}")
# if model_name in ["stosakt"]:
# save_config(
# train_config,
# model_config,
# data_config[dataset_name],
# params,
# ckpt_path,
# args,
# )
if local_rank == 0 and node_rank == 0:
save_config(
train_config, model_config, data_config[dataset_name], params, ckpt_path
)
learning_rate = params["learning_rate"]
for remove_item in [
"use_wandb",
"learning_rate",
"add_uuid",
"l2",
"global_bs",
"num_gpus",
"num_workers",
"pretrain_epoch",
"project_name",
"local_rank",
"train_mode",
]:
if remove_item in model_config:
del model_config[remove_item]
rank0_print(f"model_name:{model_name}")
if model_name in ["promptkt", "unikt"]:
pretrain_path = params["pretrain_path"]
if pretrain_path == "":
del model_config["pretrain_path"]
model = init_model4promptkt(
model_name, model_config, data_config[dataset_name], emb_type, args
)
else:
with open(os.path.join(pretrain_path, "config.json")) as fin:
config = json.load(fin)
model_config = copy.deepcopy(config["model_config"])
for remove_item in [
"use_wandb",
"learning_rate",
"add_uuid",
"l2",
"num_gpus",
"num_workers",
"global_bs",
"pretrain_path",
"pretrain_epoch",
"project_name",
"local_rank",
"train_mode",
]:
if remove_item in model_config:
del model_config[remove_item]
trained_params = config["params"]
model = load_model4promptkt(
model_name,
model_config,
data_config[dataset_name],
emb_type,
pretrain_path,
args,
mode="train",
finetune=True,
)
rank0_print(
f"model_parameter:{sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())}"
)
else:
model = init_model4promptkt(
model_name, model_config, data_config[dataset_name], emb_type, args
)
rank0_print(
f"model_parameter:{sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())}"
)
rank0_print(f"model is {model}")
if optimizer == "sgd":
opt = SGD(model.parameters(), learning_rate, momentum=0.9)
elif optimizer == "adam":
opt = Adam(model.parameters(), learning_rate)
testauc, testacc = -1, -1
window_testauc, window_testacc = -1, -1
validauc, validacc = -1, -1
best_epoch = -1
save_model = True
rank0_print("Start training")
if model_name in ["promptkt", "unikt"]:
if params["pretrain_path"] == "":
global_bs = 2560
else:
global_bs = params["global_bs"]
num_gpus = params["num_gpus"]
num_workers = params["num_workers"]
gradient_accumulation_steps = max(
global_bs / num_workers / num_gpus / train_config["batch_size"], 1.0
)
rank0_print(f"gradient_accumulation_steps:{gradient_accumulation_steps}")
(
testauc,
testacc,
window_testauc,
window_testacc,
validauc,
validacc,
best_epoch,
) = train_model4promptkt(
model,
train_loader,
valid_loader,
num_epochs,
opt,
ckpt_path,
None,
None,
save_model,
dataset_name,
fold,
gradient_accumulation_steps=gradient_accumulation_steps,
args=args,
use_wandb=use_wandb,
)
if save_model:
if model_name in ["promptkt", "unikt"]:
best_model = init_model4promptkt(
model_name,
model_config,
data_config[dataset_name],
emb_type,
args,
train_start=False,
)
if ckpt_path is not None:
try:
net = torch.load(
os.path.join(
ckpt_path,
emb_type
+ "_model.module_{}.ckpt".format(str(args.pretrain_epoch + 1)),
)
)
except:
net = torch.load(
os.path.join(ckpt_path, emb_type + "_model.module.ckpt")
)
best_model.load_state_dict(net)
rank0_print(
"fold\tmodelname\tembtype\ttestauc\ttestacc\twindow_testauc\twindow_testacc\tvalidauc\tvalidacc\tbest_epoch"
)
rank0_print(
f"{fold}\t{model_name}\t{emb_type}\t{round(testauc, 4)}\t{round(testacc, 4)}\t{round(window_testauc, 4)}\t{round(window_testacc, 4)}\t{validauc}\t{validacc}\t{best_epoch}"
)
if ckpt_path is not None:
model_save_path = os.path.join(
ckpt_path, f"{emb_type}_model.module_{args.pretrain_epoch + 1}.ckpt"
)
else:
model_save_path = None
rank0_print(f"end:{datetime.datetime.now()}")
if params["use_wandb"] == 1 and local_rank == 0 and node_rank == 0:
wandb.log(
{
"validauc": validauc,
"validacc": validacc,
"best_epoch": best_epoch,
"model_save_path": model_save_path,
}
)