-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
infomax_inductive.py
94 lines (71 loc) · 2.93 KB
/
infomax_inductive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os.path as osp
import torch
from tqdm import tqdm
from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import DeepGraphInfomax, SAGEConv
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'Reddit')
dataset = Reddit(path)
data = dataset[0].to(device, 'x', 'edge_index')
train_loader = NeighborLoader(data, num_neighbors=[10, 10, 25], batch_size=256,
shuffle=True, num_workers=12)
test_loader = NeighborLoader(data, num_neighbors=[10, 10, 25], batch_size=256,
num_workers=12)
class Encoder(torch.nn.Module):
def __init__(self, in_channels, hidden_channels):
super().__init__()
self.convs = torch.nn.ModuleList([
SAGEConv(in_channels, hidden_channels),
SAGEConv(hidden_channels, hidden_channels),
SAGEConv(hidden_channels, hidden_channels)
])
self.activations = torch.nn.ModuleList()
self.activations.extend([
torch.nn.PReLU(hidden_channels),
torch.nn.PReLU(hidden_channels),
torch.nn.PReLU(hidden_channels)
])
def forward(self, x, edge_index, batch_size):
for conv, act in zip(self.convs, self.activations):
x = conv(x, edge_index)
x = act(x)
return x[:batch_size]
def corruption(x, edge_index, batch_size):
return x[torch.randperm(x.size(0))], edge_index, batch_size
model = DeepGraphInfomax(
hidden_channels=512, encoder=Encoder(dataset.num_features, 512),
summary=lambda z, *args, **kwargs: torch.sigmoid(z.mean(dim=0)),
corruption=corruption).to(device)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
def train(epoch):
model.train()
total_loss = total_examples = 0
for batch in tqdm(train_loader, desc=f'Epoch {epoch:02d}'):
optimizer.zero_grad()
pos_z, neg_z, summary = model(batch.x, batch.edge_index,
batch.batch_size)
loss = model.loss(pos_z, neg_z, summary)
loss.backward()
optimizer.step()
total_loss += float(loss) * pos_z.size(0)
total_examples += pos_z.size(0)
return total_loss / total_examples
@torch.no_grad()
def test():
model.eval()
zs = []
for batch in tqdm(test_loader, desc='Evaluating'):
pos_z, _, _ = model(batch.x, batch.edge_index, batch.batch_size)
zs.append(pos_z.cpu())
z = torch.cat(zs, dim=0)
train_val_mask = data.train_mask | data.val_mask
acc = model.test(z[train_val_mask], data.y[train_val_mask],
z[data.test_mask], data.y[data.test_mask], max_iter=10000)
return acc
for epoch in range(1, 31):
loss = train(epoch)
print(f'Epoch {epoch:02d}, Loss: {loss:.4f}')
test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')