Description
What happened?
I wanted to rename a dimension coordinate for two datasets before merging: ds = ds.rename_vars(y="z").swap_dims(y="z")
, and the same for the second data set. After merging the datasets, the merged result has the dimension "y" in addition to "z".
Swapping the order of rename_vars
and swap_dims
before merging works in that "y" does not reappear, but then "z" is listed as a non-dimension coordinate.
Doing rename_vars
followed by swap_dims
/after/ merging gives the result I wanted, but if I merge again, the same issue occurs.
My current solution is to only rename dimension coordinates before saving to netCDF.
What did you expect to happen?
Merging two datasets with the same coordinates and dimensions (but different data variables) should result in a single dataset with all of the data variables from the two datasets and exactly the same coordinates and dimensions.
Minimal Complete Verifiable Example
import numpy as np
import xarray as xr
from xarray.core.utils import Frozen
A = np.arange(4).reshape((2, 2))
B = np.arange(4).reshape((2, 2)) + 4
ds1 = xr.Dataset({"A": (["x", "y"], A), "B": (["x", "y"], B)}, coords={"x": ("x", [1, 2]), "y": ("y", [1, 2])})
ds2 = xr.Dataset({"C": (["x", "y"], A), "D": (["x", "y"], B)}, coords={"x": ("x", [1, 2]), "y": ("y", [1, 2])})
assert ds1.dims == Frozen({"x": 2, "y": 2})
assert ds2.dims == Frozen({"x": 2, "y": 2})
ds1_swap = ds1.rename_vars(y="z").swap_dims(y="z")
ds2_swap = ds2.rename_vars(y="z").swap_dims(y="z")
assert ds1_swap.dims == Frozen({"x": 2, "z": 2})
assert ds2_swap.dims == Frozen({"x": 2, "z": 2})
# merging makes the dimension "y" reappear (I would expect this assertion to fail):
assert xr.merge([ds1_swap, ds2_swap]).dims == Frozen({"x": 2, "z": 2, "y": 2})
# renaming and swapping after the merge causes issues later:
ds12 = xr.merge([ds1, ds2]).rename_vars(y="z").swap_dims(y="z")
ds3 = xr.Dataset({"E": (["x", "z"], A), "F": (["x", "z"], B)}, coords={"x": ("x", [1, 2]), "z": ("z", [1, 2])})
# ds12 and ds3 have the same dimensions:
assert ds12.dims == Frozen({"x": 2, "z": 2})
assert ds3.dims == Frozen({"x": 2, "z": 2})
# but merging brings back "y"
ds123 = xr.merge([ds12, ds3])
assert ds123.dims == Frozen({"x": 2, "z": 2, "y": 2})
# as do other operations:
ds12_as = ds12.assign_coords(x=(ds12.x + 1))
assert ds12_as.sizes == Frozen({"x": 2, "z": 2, "y": 2})
MVCE confirmation
- Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
- Complete example — the example is self-contained, including all data and the text of any traceback.
- Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
- New issue — a search of GitHub Issues suggests this is not a duplicate.
- Recent environment — the issue occurs with the latest version of xarray and its dependencies.
Relevant log output
No response
Anything else we need to know?
No response
Environment
The MVCE works in all venvs I've tried including:
INSTALLED VERSIONS
commit: None
python: 3.10.13 (main, Nov 10 2023, 15:02:19) [GCC 11.4.0]
python-bits: 64
OS: Linux
OS-release: 6.5.0-14-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: ('en_GB', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.9.3-development
xarray: 2023.11.0
pandas: 1.5.3
numpy: 1.26.2
scipy: 1.11.4
netCDF4: 1.6.5
pydap: None
h5netcdf: 1.3.0
h5py: 3.10.0
Nio: None
zarr: None
cftime: 1.6.3
nc_time_axis: 1.4.1
iris: None
bottleneck: None
dask: 2023.12.0
distributed: None
matplotlib: 3.8.2
cartopy: 0.22.0
seaborn: 0.13.0
numbagg: None
fsspec: 2023.12.1
cupy: None
pint: None
sparse: 0.15.1
flox: None
numpy_groupies: None
setuptools: 69.0.2
pip: 23.3.1
conda: None
pytest: 7.4.3
mypy: None
IPython: 8.18.1
sphinx: None
/home/brendan/Documents/inversions/.pymc_venv/lib/python3.10/site-packages/_distutils_hack/init.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
INSTALLED VERSIONS
commit: None
python: 3.9.7 (default, Sep 16 2021, 13:09:58)
[GCC 7.5.0]
python-bits: 64
OS: Linux
OS-release: 3.10.0-1160.81.1.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: ('en_GB', 'UTF-8')
libhdf5: None
libnetcdf: None
xarray: 2024.1.0
pandas: 2.2.0
numpy: 1.26.3
scipy: None
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: None
nc_time_axis: None
iris: None
bottleneck: None
dask: None
distributed: None
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 69.0.3
pip: 23.3.2
conda: None
pytest: None
mypy: None
IPython: 8.18.1
sphinx: None