Open
Description
What happened?
The skipna parameter appears to have no effect while annually resampling a monthly DataArray.
I'm not sure if this is related to #6772
What did you expect to happen?
I expected da_yrA
to be NaN since I am not skipping NaN values.
Minimal Complete Verifiable Example
import numpy as np
import pandas as pd
import xarray as xr
data = np.arange(12)
month_index = pd.date_range("2022-01","2022-12-31", freq="M")
df = pd.DataFrame(index=month_index, data=data)
df.index.name = "time"
df.columns.name = "value"
df.loc["2022-01":"2022-02"] = np.nan
da = xr.DataArray(df)
# these unexpectedly produce the same result
da_yrA = (da).resample(time="A-Dec", skipna=False).mean()
da_yrB = (da).resample(time="A-Dec", skipna=True).mean()
print(da_yrA)
print(da_yrB)
MVCE confirmation
- Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
- Complete example — the example is self-contained, including all data and the text of any traceback.
- Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
- New issue — a search of GitHub Issues suggests this is not a duplicate.
Relevant log output
No response
Anything else we need to know?
No response
Environment
scipy: 1.10.0
netCDF4: 1.6.2
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: 1.4.1
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2023.2.0
distributed: 2023.2.0
matplotlib: 3.7.0
cartopy: 0.21.1
seaborn: None
numbagg: None
fsspec: 2023.1.0
cupy: None
pint: None
sparse: 0.13.0
flox: None
numpy_groupies: None
setuptools: 67.3.2
pip: 23.0.1
conda: None
pytest: None
mypy: None
IPython: 8.10.0
sphinx: None