Skip to content

groupby very slow compared to pandas #659

Closed
@anntzer

Description

@anntzer
import timeit
import numpy as np
from pandas import DataFrame
from xray import Dataset, DataArray

df = DataFrame({"a": np.r_[np.arange(500.), np.arange(500.)],
                "b": np.arange(1000.)})
print(timeit.repeat('df.groupby("a").agg("mean")', globals={"df": df}, number=10))
print(timeit.repeat('df.groupby("a").agg(np.mean)', globals={"df": df, "np": np}, number=10))

ds = Dataset({"a": DataArray(np.r_[np.arange(500.), np.arange(500.)]),
              "b": DataArray(np.arange(1000.))})
print(timeit.repeat('ds.groupby("a").mean()', globals={"ds": ds}, number=10))

This outputs

[0.010462284000823274, 0.009770361997652799, 0.01081446700845845]
[0.02622630601399578, 0.024328112005605362, 0.018717073995503597]
[2.2804569930012804, 2.1666158599982737, 2.2688316510029836]

i.e. xray's groupby is ~100 times slower than pandas' one (and 200 times slower than passing "mean" to pandas' groupby, which I assume involves some specialization).

(This is the actual order or magnitude of the data size and redundancy I want to handle, i.e. thousands of points with very limited duplication.)

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions