-
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Description
I'm trying to count unique samples when resampling to a square kilometre from a 5x5m input grid. I'd like to be able to apply the Dask.array.unique() function with return_counts=True to give me a new dimension with the original integer values and their counts.
In order to resample along spatial dimensions I assume I need to use .coarsen(), unfortunately the core.rolling.DataArrayCoarsen object does not yet implement either a .map() or .reduce() function for applying an arbitrary function when coarsening.
MCVE Code Sample
import xarray as xr
from dask.array import unique
da = xr.DataArray([1, 1, 2, 3, 5, 3], [('x', range(0, 6))])
coarse = da2.coarsen(dim={'x': 2}).map(unique, kwargs={'return_counts': True})
coarseoutputs;
AttributeError: 'DataArrayCoarsen' object has no attribute 'map'
N.B. core.groupby.DataArrayGroupBy has both .map() and .reduce() while core.rolling.DataArrayRolling has .reduce(). Would it make sense for all three to have the same interface?
Output of xr.show_versions()
xarray: 0.15.0
pandas: 1.0.0
numpy: 1.18.1
scipy: 1.4.1
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.1.2
cfgrib: None
iris: None
bottleneck: None
dask: 2.10.1
distributed: 2.10.0
matplotlib: 3.1.2
cartopy: None
seaborn: None
numbagg: None
setuptools: 40.8.0
pip: 19.0.3
conda: None
pytest: 5.3.5
IPython: 7.11.1
sphinx: None