Description
Code Sample
Using the following example data set:
example_jan.nc
#!/usr/bin/env python3
import xarray
ds = xarray.open_mfdataset('example_jan.nc', concat_dim='Time')
print(ds)
The result from xarray 0.10.2 (and all previous various xarray versions we've worked with):
Dimensions: (Time: 1, nOceanRegions: 7, nOceanRegionsTmp: 7, nVertLevels: 100)
Dimensions without coordinates: Time, nOceanRegions, nOceanRegionsTmp, nVertLevels
Data variables:
time_avg_avgValueWithinOceanLayerRegion_avgLayerTemperature (Time, nOceanRegionsTmp, nVertLevels) float64 dask.array<shape=(1, 7, 100), chunksize=(1, 7, 100)>
time_avg_avgValueWithinOceanRegion_avgSurfaceTemperature (Time, nOceanRegions) float64 dask.array<shape=(1, 7), chunksize=(1, 7)>
time_avg_daysSinceStartOfSim (Time) timedelta64[ns] dask.array<shape=(1,), chunksize=(1,)>
xtime_end (Time) |S64 dask.array<shape=(1,), chunksize=(1,)>
xtime_start (Time) |S64 dask.array<shape=(1,), chunksize=(1,)>
refBottomDepth (nVertLevels) float64 dask.array<shape=(100,), chunksize=(100,)>
Attributes:
history: Tue Dec 6 04:49:14 2016: ncatted -O -a ,global,d,, acme_alaph7...
NCO: "4.6.2"
The results with xarray 0.10.3:
<xarray.Dataset>
Dimensions: (Time: 1, nOceanRegions: 7, nOceanRegionsTmp: 7, nVertLevels: 100)
Dimensions without coordinates: Time, nOceanRegions, nOceanRegionsTmp, nVertLevels
Data variables:
time_avg_avgValueWithinOceanLayerRegion_avgLayerTemperature (Time, nOceanRegionsTmp, nVertLevels) float64 dask.array<shape=(1, 7, 100), chunksize=(1, 7, 100)>
time_avg_avgValueWithinOceanRegion_avgSurfaceTemperature (Time, nOceanRegions) float64 dask.array<shape=(1, 7), chunksize=(1, 7)>
time_avg_daysSinceStartOfSim (Time) timedelta64[ns] dask.array<shape=(1,), chunksize=(1,)>
xtime_end (Time) |S64 dask.array<shape=(1,), chunksize=(1,)>
xtime_start (Time) |S64 dask.array<shape=(1,), chunksize=(1,)>
refBottomDepth (Time, nVertLevels) float64 dask.array<shape=(1, 100), chunksize=(1, 100)>
Attributes:
history: Tue Dec 6 04:49:14 2016: ncatted -O -a ,global,d,, acme_alaph7...
NCO: "4.6.2"
Problem description
The expected behavior for us was that refBottomDepth
should not have Time
as a dimension. It does not vary with time and does not have a Time
dimension in the input data set.
It seems like #1988 and #2048 were intended to address cases where the concat_dim
was not yet present in the input files. But in cases where concat_dim
is already in the input files, it seems like only those fields that include this dimensions should be concatenated and other fields should remain free of concat_dim
. Part of the problem for us is that the number of dimensions of some of our variables change depending on which xarray version is being used.
Expected Output
That for 0.10.2 (see above)
Output of xr.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Linux
OS-release: 4.13.0-38-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
xarray: 0.10.3
pandas: 0.22.0
numpy: 1.14.2
scipy: 1.0.1
netCDF4: 1.3.1
h5netcdf: 0.5.1
h5py: 2.7.1
Nio: None
zarr: None
bottleneck: 1.2.1
cyordereddict: None
dask: 0.17.2
distributed: 1.21.6
matplotlib: 2.2.2
cartopy: 0.16.0
seaborn: None
setuptools: 39.0.1
pip: 9.0.3
conda: None
pytest: 3.5.0
IPython: None
sphinx: 1.7.2