Skip to content

Boolean indexing with multi-dimensional key arrays #1887

Open
@shoyer

Description

@shoyer

Originally from #974

For boolean indexing:

  • da[key] where key is a boolean labelled array (with any number of dimensions) is made equivalent to da.where(key.reindex_like(ds), drop=True). This matches the existing behavior if key is a 1D boolean array. For multi-dimensional arrays, even though the result is now multi-dimensional, this coupled with automatic skipping of NaNs means that da[key].mean() gives the same result as in NumPy.
  • da[key] = value where key is a boolean labelled array can be made equivalent to da = da.where(*align(key.reindex_like(da), value.reindex_like(da))) (that is, the three argument form of where).
  • da[key_0, ..., key_n] where all of key_i are boolean arrays gets handled in the usual way. It is an IndexingError to supply multiple labelled keys if any of them are not already aligned with as the corresponding index coordinates (and share the same dimension name). If they want alignment, we suggest users simply write da[key_0 & ... & key_n].

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions