-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
dataset_io.py
652 lines (511 loc) · 21.1 KB
/
dataset_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
from __future__ import annotations
import os
from dataclasses import dataclass
import numpy as np
import pandas as pd
import xarray as xr
from . import _skip_slow, parameterized, randint, randn, requires_dask
try:
import dask
import dask.multiprocessing
except ImportError:
pass
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
_ENGINES = tuple(xr.backends.list_engines().keys() - {"store"})
class IOSingleNetCDF:
"""
A few examples that benchmark reading/writing a single netCDF file with
xarray
"""
timeout = 300.0
repeat = 1
number = 5
def make_ds(self):
# single Dataset
self.ds = xr.Dataset()
self.nt = 1000
self.nx = 90
self.ny = 45
self.block_chunks = {
"time": self.nt / 4,
"lon": self.nx / 3,
"lat": self.ny / 3,
}
self.time_chunks = {"time": int(self.nt / 36)}
times = pd.date_range("1970-01-01", periods=self.nt, freq="D")
lons = xr.DataArray(
np.linspace(0, 360, self.nx),
dims=("lon",),
attrs={"units": "degrees east", "long_name": "longitude"},
)
lats = xr.DataArray(
np.linspace(-90, 90, self.ny),
dims=("lat",),
attrs={"units": "degrees north", "long_name": "latitude"},
)
self.ds["foo"] = xr.DataArray(
randn((self.nt, self.nx, self.ny), frac_nan=0.2),
coords={"lon": lons, "lat": lats, "time": times},
dims=("time", "lon", "lat"),
name="foo",
attrs={"units": "foo units", "description": "a description"},
)
self.ds["bar"] = xr.DataArray(
randn((self.nt, self.nx, self.ny), frac_nan=0.2),
coords={"lon": lons, "lat": lats, "time": times},
dims=("time", "lon", "lat"),
name="bar",
attrs={"units": "bar units", "description": "a description"},
)
self.ds["baz"] = xr.DataArray(
randn((self.nx, self.ny), frac_nan=0.2).astype(np.float32),
coords={"lon": lons, "lat": lats},
dims=("lon", "lat"),
name="baz",
attrs={"units": "baz units", "description": "a description"},
)
self.ds.attrs = {"history": "created for xarray benchmarking"}
self.oinds = {
"time": randint(0, self.nt, 120),
"lon": randint(0, self.nx, 20),
"lat": randint(0, self.ny, 10),
}
self.vinds = {
"time": xr.DataArray(randint(0, self.nt, 120), dims="x"),
"lon": xr.DataArray(randint(0, self.nx, 120), dims="x"),
"lat": slice(3, 20),
}
class IOWriteSingleNetCDF3(IOSingleNetCDF):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
self.format = "NETCDF3_64BIT"
self.make_ds()
def time_write_dataset_netcdf4(self):
self.ds.to_netcdf("test_netcdf4_write.nc", engine="netcdf4", format=self.format)
def time_write_dataset_scipy(self):
self.ds.to_netcdf("test_scipy_write.nc", engine="scipy", format=self.format)
class IOReadSingleNetCDF4(IOSingleNetCDF):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
self.make_ds()
self.filepath = "test_single_file.nc4.nc"
self.format = "NETCDF4"
self.ds.to_netcdf(self.filepath, format=self.format)
def time_load_dataset_netcdf4(self):
xr.open_dataset(self.filepath, engine="netcdf4").load()
def time_orthogonal_indexing(self):
ds = xr.open_dataset(self.filepath, engine="netcdf4")
ds = ds.isel(**self.oinds).load()
def time_vectorized_indexing(self):
ds = xr.open_dataset(self.filepath, engine="netcdf4")
ds = ds.isel(**self.vinds).load()
class IOReadSingleNetCDF3(IOReadSingleNetCDF4):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
self.make_ds()
self.filepath = "test_single_file.nc3.nc"
self.format = "NETCDF3_64BIT"
self.ds.to_netcdf(self.filepath, format=self.format)
def time_load_dataset_scipy(self):
xr.open_dataset(self.filepath, engine="scipy").load()
def time_orthogonal_indexing(self):
ds = xr.open_dataset(self.filepath, engine="scipy")
ds = ds.isel(**self.oinds).load()
def time_vectorized_indexing(self):
ds = xr.open_dataset(self.filepath, engine="scipy")
ds = ds.isel(**self.vinds).load()
class IOReadSingleNetCDF4Dask(IOSingleNetCDF):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
requires_dask()
self.make_ds()
self.filepath = "test_single_file.nc4.nc"
self.format = "NETCDF4"
self.ds.to_netcdf(self.filepath, format=self.format)
def time_load_dataset_netcdf4_with_block_chunks(self):
xr.open_dataset(
self.filepath, engine="netcdf4", chunks=self.block_chunks
).load()
def time_load_dataset_netcdf4_with_block_chunks_oindexing(self):
ds = xr.open_dataset(self.filepath, engine="netcdf4", chunks=self.block_chunks)
ds = ds.isel(**self.oinds).load()
def time_load_dataset_netcdf4_with_block_chunks_vindexing(self):
ds = xr.open_dataset(self.filepath, engine="netcdf4", chunks=self.block_chunks)
ds = ds.isel(**self.vinds).load()
def time_load_dataset_netcdf4_with_block_chunks_multiprocessing(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_dataset(
self.filepath, engine="netcdf4", chunks=self.block_chunks
).load()
def time_load_dataset_netcdf4_with_time_chunks(self):
xr.open_dataset(self.filepath, engine="netcdf4", chunks=self.time_chunks).load()
def time_load_dataset_netcdf4_with_time_chunks_multiprocessing(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_dataset(
self.filepath, engine="netcdf4", chunks=self.time_chunks
).load()
class IOReadSingleNetCDF3Dask(IOReadSingleNetCDF4Dask):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
requires_dask()
self.make_ds()
self.filepath = "test_single_file.nc3.nc"
self.format = "NETCDF3_64BIT"
self.ds.to_netcdf(self.filepath, format=self.format)
def time_load_dataset_scipy_with_block_chunks(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_dataset(
self.filepath, engine="scipy", chunks=self.block_chunks
).load()
def time_load_dataset_scipy_with_block_chunks_oindexing(self):
ds = xr.open_dataset(self.filepath, engine="scipy", chunks=self.block_chunks)
ds = ds.isel(**self.oinds).load()
def time_load_dataset_scipy_with_block_chunks_vindexing(self):
ds = xr.open_dataset(self.filepath, engine="scipy", chunks=self.block_chunks)
ds = ds.isel(**self.vinds).load()
def time_load_dataset_scipy_with_time_chunks(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_dataset(
self.filepath, engine="scipy", chunks=self.time_chunks
).load()
class IOMultipleNetCDF:
"""
A few examples that benchmark reading/writing multiple netCDF files with
xarray
"""
timeout = 300.0
repeat = 1
number = 5
def make_ds(self, nfiles=10):
# multiple Dataset
self.ds = xr.Dataset()
self.nt = 1000
self.nx = 90
self.ny = 45
self.nfiles = nfiles
self.block_chunks = {
"time": self.nt / 4,
"lon": self.nx / 3,
"lat": self.ny / 3,
}
self.time_chunks = {"time": int(self.nt / 36)}
self.time_vars = np.split(
pd.date_range("1970-01-01", periods=self.nt, freq="D"), self.nfiles
)
self.ds_list = []
self.filenames_list = []
for i, times in enumerate(self.time_vars):
ds = xr.Dataset()
nt = len(times)
lons = xr.DataArray(
np.linspace(0, 360, self.nx),
dims=("lon",),
attrs={"units": "degrees east", "long_name": "longitude"},
)
lats = xr.DataArray(
np.linspace(-90, 90, self.ny),
dims=("lat",),
attrs={"units": "degrees north", "long_name": "latitude"},
)
ds["foo"] = xr.DataArray(
randn((nt, self.nx, self.ny), frac_nan=0.2),
coords={"lon": lons, "lat": lats, "time": times},
dims=("time", "lon", "lat"),
name="foo",
attrs={"units": "foo units", "description": "a description"},
)
ds["bar"] = xr.DataArray(
randn((nt, self.nx, self.ny), frac_nan=0.2),
coords={"lon": lons, "lat": lats, "time": times},
dims=("time", "lon", "lat"),
name="bar",
attrs={"units": "bar units", "description": "a description"},
)
ds["baz"] = xr.DataArray(
randn((self.nx, self.ny), frac_nan=0.2).astype(np.float32),
coords={"lon": lons, "lat": lats},
dims=("lon", "lat"),
name="baz",
attrs={"units": "baz units", "description": "a description"},
)
ds.attrs = {"history": "created for xarray benchmarking"}
self.ds_list.append(ds)
self.filenames_list.append("test_netcdf_%i.nc" % i)
class IOWriteMultipleNetCDF3(IOMultipleNetCDF):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
self.make_ds()
self.format = "NETCDF3_64BIT"
def time_write_dataset_netcdf4(self):
xr.save_mfdataset(
self.ds_list, self.filenames_list, engine="netcdf4", format=self.format
)
def time_write_dataset_scipy(self):
xr.save_mfdataset(
self.ds_list, self.filenames_list, engine="scipy", format=self.format
)
class IOReadMultipleNetCDF4(IOMultipleNetCDF):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
requires_dask()
self.make_ds()
self.format = "NETCDF4"
xr.save_mfdataset(self.ds_list, self.filenames_list, format=self.format)
def time_load_dataset_netcdf4(self):
xr.open_mfdataset(self.filenames_list, engine="netcdf4").load()
def time_open_dataset_netcdf4(self):
xr.open_mfdataset(self.filenames_list, engine="netcdf4")
class IOReadMultipleNetCDF3(IOReadMultipleNetCDF4):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
requires_dask()
self.make_ds()
self.format = "NETCDF3_64BIT"
xr.save_mfdataset(self.ds_list, self.filenames_list, format=self.format)
def time_load_dataset_scipy(self):
xr.open_mfdataset(self.filenames_list, engine="scipy").load()
def time_open_dataset_scipy(self):
xr.open_mfdataset(self.filenames_list, engine="scipy")
class IOReadMultipleNetCDF4Dask(IOMultipleNetCDF):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
requires_dask()
self.make_ds()
self.format = "NETCDF4"
xr.save_mfdataset(self.ds_list, self.filenames_list, format=self.format)
def time_load_dataset_netcdf4_with_block_chunks(self):
xr.open_mfdataset(
self.filenames_list, engine="netcdf4", chunks=self.block_chunks
).load()
def time_load_dataset_netcdf4_with_block_chunks_multiprocessing(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_mfdataset(
self.filenames_list, engine="netcdf4", chunks=self.block_chunks
).load()
def time_load_dataset_netcdf4_with_time_chunks(self):
xr.open_mfdataset(
self.filenames_list, engine="netcdf4", chunks=self.time_chunks
).load()
def time_load_dataset_netcdf4_with_time_chunks_multiprocessing(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_mfdataset(
self.filenames_list, engine="netcdf4", chunks=self.time_chunks
).load()
def time_open_dataset_netcdf4_with_block_chunks(self):
xr.open_mfdataset(
self.filenames_list, engine="netcdf4", chunks=self.block_chunks
)
def time_open_dataset_netcdf4_with_block_chunks_multiprocessing(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_mfdataset(
self.filenames_list, engine="netcdf4", chunks=self.block_chunks
)
def time_open_dataset_netcdf4_with_time_chunks(self):
xr.open_mfdataset(
self.filenames_list, engine="netcdf4", chunks=self.time_chunks
)
def time_open_dataset_netcdf4_with_time_chunks_multiprocessing(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_mfdataset(
self.filenames_list, engine="netcdf4", chunks=self.time_chunks
)
class IOReadMultipleNetCDF3Dask(IOReadMultipleNetCDF4Dask):
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
requires_dask()
self.make_ds()
self.format = "NETCDF3_64BIT"
xr.save_mfdataset(self.ds_list, self.filenames_list, format=self.format)
def time_load_dataset_scipy_with_block_chunks(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_mfdataset(
self.filenames_list, engine="scipy", chunks=self.block_chunks
).load()
def time_load_dataset_scipy_with_time_chunks(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_mfdataset(
self.filenames_list, engine="scipy", chunks=self.time_chunks
).load()
def time_open_dataset_scipy_with_block_chunks(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_mfdataset(
self.filenames_list, engine="scipy", chunks=self.block_chunks
)
def time_open_dataset_scipy_with_time_chunks(self):
with dask.config.set(scheduler="multiprocessing"):
xr.open_mfdataset(
self.filenames_list, engine="scipy", chunks=self.time_chunks
)
def create_delayed_write():
import dask.array as da
vals = da.random.random(300, chunks=(1,))
ds = xr.Dataset({"vals": (["a"], vals)})
return ds.to_netcdf("file.nc", engine="netcdf4", compute=False)
class IOWriteNetCDFDask:
timeout = 60
repeat = 1
number = 5
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
requires_dask()
self.write = create_delayed_write()
def time_write(self):
self.write.compute()
class IOWriteNetCDFDaskDistributed:
def setup(self):
# TODO: Lazily skipped in CI as it is very demanding and slow.
# Improve times and remove errors.
_skip_slow()
requires_dask()
try:
import distributed
except ImportError:
raise NotImplementedError()
self.client = distributed.Client()
self.write = create_delayed_write()
def cleanup(self):
self.client.shutdown()
def time_write(self):
self.write.compute()
class IOReadSingleFile(IOSingleNetCDF):
def setup(self, *args, **kwargs):
self.make_ds()
self.filepaths = {}
for engine in _ENGINES:
self.filepaths[engine] = f"test_single_file_with_{engine}.nc"
self.ds.to_netcdf(self.filepaths[engine], engine=engine)
@parameterized(["engine", "chunks"], (_ENGINES, [None, {}]))
def time_read_dataset(self, engine, chunks):
xr.open_dataset(self.filepaths[engine], engine=engine, chunks=chunks)
class IOReadCustomEngine:
def setup(self, *args, **kwargs):
"""
The custom backend does the bare minimum to be considered a lazy backend. But
the data in it is still in memory so slow file reading shouldn't affect the
results.
"""
requires_dask()
@dataclass
class PerformanceBackendArray(xr.backends.BackendArray):
filename_or_obj: str | os.PathLike | None
shape: tuple[int, ...]
dtype: np.dtype
lock: xr.backends.locks.SerializableLock
def __getitem__(self, key: tuple):
return xr.core.indexing.explicit_indexing_adapter(
key,
self.shape,
xr.core.indexing.IndexingSupport.BASIC,
self._raw_indexing_method,
)
def _raw_indexing_method(self, key: tuple):
raise NotImplementedError
@dataclass
class PerformanceStore(xr.backends.common.AbstractWritableDataStore):
manager: xr.backends.CachingFileManager
mode: str | None = None
lock: xr.backends.locks.SerializableLock | None = None
autoclose: bool = False
def __post_init__(self):
self.filename = self.manager._args[0]
@classmethod
def open(
cls,
filename: str | os.PathLike | None,
mode: str = "r",
lock: xr.backends.locks.SerializableLock | None = None,
autoclose: bool = False,
):
if lock is None:
if mode == "r":
locker = xr.backends.locks.SerializableLock()
else:
locker = xr.backends.locks.SerializableLock()
else:
locker = lock
manager = xr.backends.CachingFileManager(
xr.backends.DummyFileManager,
filename,
mode=mode,
)
return cls(manager, mode=mode, lock=locker, autoclose=autoclose)
def load(self) -> tuple:
"""
Load a bunch of test data quickly.
Normally this method would've opened a file and parsed it.
"""
n_variables = 2000
# Important to have a shape and dtype for lazy loading.
shape = (1000,)
dtype = np.dtype(int)
variables = {
f"long_variable_name_{v}": xr.Variable(
data=PerformanceBackendArray(
self.filename, shape, dtype, self.lock
),
dims=("time",),
fastpath=True,
)
for v in range(0, n_variables)
}
attributes = {}
return variables, attributes
class PerformanceBackend(xr.backends.BackendEntrypoint):
def open_dataset(
self,
filename_or_obj: str | os.PathLike | None,
drop_variables: tuple[str] = None,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
use_cftime=None,
decode_timedelta=None,
lock=None,
**kwargs,
) -> xr.Dataset:
filename_or_obj = xr.backends.common._normalize_path(filename_or_obj)
store = PerformanceStore.open(filename_or_obj, lock=lock)
store_entrypoint = xr.backends.store.StoreBackendEntrypoint()
ds = store_entrypoint.open_dataset(
store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
return ds
self.engine = PerformanceBackend
@parameterized(["chunks"], ([None, {}, {"time": 10}]))
def time_open_dataset(self, chunks):
"""
Time how fast xr.open_dataset is without the slow data reading part.
Test with and without dask.
"""
xr.open_dataset(None, engine=self.engine, chunks=chunks)