@@ -114,6 +114,7 @@ const char * llm_type_name(llm_type type) {
114114        case LLM_TYPE_17B_16E:       return "17Bx16E (Scout)";
115115        case LLM_TYPE_17B_128E:      return "17Bx128E (Maverick)";
116116        case LLM_TYPE_A13B:          return "A13B";
117+         case LLM_TYPE_8B_A1B:        return "8B.A1B";
117118        case LLM_TYPE_21B_A3B:       return "21B.A3B";
118119        case LLM_TYPE_30B_A3B:       return "30B.A3B";
119120        case LLM_TYPE_106B_A12B:     return "106B.A12B";
@@ -1995,14 +1996,29 @@ void llama_model::load_hparams(llama_model_loader & ml) {
19951996                for (uint32_t il = 0; il < hparams.n_layer; ++il) {
19961997                    hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
19971998                }
1999+                 hparams.n_layer_dense_lead = hparams.n_layer;
19982000                switch (hparams.n_ff()) {
19992001                    case  4608: type = LLM_TYPE_350M; break;
20002002                    case  6912: type = LLM_TYPE_700M; break;
20012003                    case  8192: type = LLM_TYPE_1_2B; break;
20022004                    case 10752: type = LLM_TYPE_2_6B; break;
2003-                     default:   type = LLM_TYPE_UNKNOWN;
2005+                     default:     type = LLM_TYPE_UNKNOWN;
20042006                }
20052007            } break;
2008+         case LLM_ARCH_LFM2MOE:
2009+             {
2010+                 ml.get_key(LLM_KV_SHORTCONV_L_CACHE,           hparams.n_shortconv_l_cache);
2011+                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
2012+                 ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
2013+                 ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
2014+                 ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func);
2015+ 
2016+                 for (uint32_t il = 0; il < hparams.n_layer; ++il) {
2017+                     hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
2018+                 }
2019+ 
2020+                 type = LLM_TYPE_8B_A1B;
2021+             } break;
20062022        case LLM_ARCH_SMALLTHINKER:
20072023            {
20082024                const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
@@ -5814,6 +5830,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
58145830                    }
58155831                } break;
58165832            case LLM_ARCH_LFM2:
5833+             case LLM_ARCH_LFM2MOE:
58175834                {
58185835                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab}, 0);
58195836                    tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
@@ -5825,11 +5842,23 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
58255842
58265843                    for (int i = 0; i < n_layer; ++i) {
58275844                        auto & layer = layers[i];
5828-                         // ffn is same for transformer and conv layers
5845+ 
5846+                         const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);
5847+ 
5848+                         // ffn/moe is same for transformer and conv layers
58295849                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
5830-                         layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
5831-                         layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
5832-                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
5850+                         if (is_moe_layer) {
5851+                             GGML_ASSERT(n_expert && n_expert_used);
5852+                             layer.ffn_gate_inp    = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i),  {n_embd, n_expert}, 0);
5853+                             layer.ffn_gate_exps   = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
5854+                             layer.ffn_down_exps   = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp,   n_embd, n_expert}, 0);
5855+                             layer.ffn_up_exps     = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i),   {n_embd, hparams.n_ff_exp, n_expert}, 0);
5856+                             layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
5857+                         } else {  // dense
5858+                             layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
5859+                             layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
5860+                             layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
5861+                         }
58335862
58345863                        // for operator_norm
58355864                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
@@ -6310,7 +6339,7 @@ void llama_model::print_info() const {
63106339        LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
63116340    }
63126341
6313-     if (arch == LLM_ARCH_SMALLTHINKER) {
6342+     if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE ) {
63146343        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
63156344        LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
63166345    }
@@ -18602,6 +18631,8 @@ struct llm_build_lfm2 : public llm_graph_context {
1860218631        ggml_tensor * inp_out_ids = build_inp_out_ids();
1860318632
1860418633        for (int il = 0; il < n_layer; ++il) {
18634+             const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
18635+ 
1860518636            auto * prev_cur = cur;
1860618637            cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
1860718638            cb(cur, "model.layers.{}.operator_norm", il);
@@ -18616,7 +18647,16 @@ struct llm_build_lfm2 : public llm_graph_context {
1861618647            }
1861718648
1861818649            cur = ggml_add(ctx0, prev_cur, cur);
18619-             cur = ggml_add(ctx0, cur, build_feed_forward(cur, il));
18650+ 
18651+             auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
18652+             cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
18653+ 
18654+             ggml_tensor * ffn_out = is_moe_layer ?
18655+                 build_moe_feed_forward(ffn_norm_out, il) :
18656+                 build_dense_feed_forward(ffn_norm_out, il);
18657+             cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
18658+ 
18659+             cur = ggml_add(ctx0, cur, ffn_out);
1862018660        }
1862118661
1862218662        cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
@@ -18631,23 +18671,32 @@ struct llm_build_lfm2 : public llm_graph_context {
1863118671        ggml_build_forward_expand(gf, cur);
1863218672    }
1863318673
18634-     ggml_tensor * build_feed_forward(ggml_tensor * cur,
18635-                                      int           il) const {
18636-         cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
18637-         cb(cur, "model.layers.{}.ffn_norm", il);
18674+     ggml_tensor * build_moe_feed_forward(ggml_tensor * cur,
18675+                                          int           il) const {
18676+         return build_moe_ffn(cur,
18677+                     model.layers[il].ffn_gate_inp,
18678+                     model.layers[il].ffn_up_exps,
18679+                     model.layers[il].ffn_gate_exps,
18680+                     model.layers[il].ffn_down_exps,
18681+                     model.layers[il].ffn_exp_probs_b,
18682+                     n_expert, n_expert_used,
18683+                     LLM_FFN_SILU, true,
18684+                     false, 0.0,
18685+                     static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
18686+                     il);
18687+     }
1863818688
18689+     ggml_tensor * build_dense_feed_forward(ggml_tensor * cur,
18690+                                            int           il) const {
1863918691        GGML_ASSERT(!model.layers[il].ffn_up_b);
1864018692        GGML_ASSERT(!model.layers[il].ffn_gate_b);
1864118693        GGML_ASSERT(!model.layers[il].ffn_down_b);
18642-         cur =  build_ffn(cur,
18694+         return  build_ffn(cur,
1864318695                model.layers[il].ffn_up,   NULL, NULL,
1864418696                model.layers[il].ffn_gate, NULL, NULL,
1864518697                model.layers[il].ffn_down, NULL, NULL,
1864618698                NULL,
1864718699                LLM_FFN_SILU, LLM_FFN_PAR, il);
18648-         cb(cur, "model.layers.{}.feed_forward.w2", il);
18649- 
18650-         return cur;
1865118700    }
1865218701
1865318702    ggml_tensor * build_attn_block(ggml_tensor             * cur,
@@ -19817,6 +19866,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
1981719866                llm = std::make_unique<llm_build_falcon_h1>(*this, params);
1981819867            } break;
1981919868        case LLM_ARCH_LFM2:
19869+         case LLM_ARCH_LFM2MOE:
1982019870            {
1982119871                llm = std::make_unique<llm_build_lfm2>(*this, params);
1982219872            } break;
@@ -20039,6 +20089,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
2003920089        case LLM_ARCH_OPENAI_MOE:
2004020090        case LLM_ARCH_HUNYUAN_DENSE:
2004120091        case LLM_ARCH_LFM2:
20092+         case LLM_ARCH_LFM2MOE:
2004220093        case LLM_ARCH_SMALLTHINKER:
2004320094        case LLM_ARCH_GLM4_MOE:
2004420095        case LLM_ARCH_SEED_OSS:
0 commit comments