Skip to content

Latest commit

 

History

History
515 lines (383 loc) · 19.2 KB

api_EN.md

File metadata and controls

515 lines (383 loc) · 19.2 KB

API Docs

English / 中文

Table of Contents

Before You Start: Start the Backend Service

Before making API requests, please run the backend service.

python deploy_api.py

API Functionality Description

1. Generate ID Photo (Transparent Background)

API Name: idphoto

The logic of the Generate ID Photo API is to send an RGB image and output a standard ID photo and a high-definition ID photo:

  • High-definition ID Photo: An ID photo created based on the aspect ratio of size, with the filename having _hd appended to output_image_dir.
  • Standard ID Photo: The size equals size, scaled from the high-definition ID photo, with the filename as output_image_dir.

It is important to note that both generated photos are transparent (RGBA four-channel images). To create a complete ID photo, you will also need to use the Add Background Color API below.

Q: Why is it designed this way?
A: Because in actual products, users frequently switch background color preview effects, providing a transparent background image for the front-end JS code to composite colors is a better experience.

Request Parameters:

Parameter Name Type Required Description
input_image file Choose one of input_image or input_image_base64 The input image file, which needs to be an RGB three-channel image.
input_image_base64 str Choose one of input_image or input_image_base64 The base64 encoding of the input image file, which needs to be an RGB three-channel image.
height int No The height of the standard ID photo, with a default value of 413.
width int No The width of the standard ID photo, with a default value of 295.
human_matting_model str No The human segmentation model, with a default value of modnet_photographic_portrait_matting. Available values are modnet_photographic_portrait_matting, hivision_modnet, rmbg-1.4, and birefnet-v1-lite.
face_detect_model str No The face detection model, with a default value of mtcnn. Available values are mtcnn, face_plusplus, and retinaface-resnet50.
hd bool No Whether to generate a high-definition ID photo, with a default value of true.
dpi int No The image resolution, with a default value of 300.
face_alignment bool No Whether to perform face alignment, with a default value of true.
head_measure_ratio float No The ratio of the face area to the photo area, with a default value of 0.2.
head_height_ratio float No The ratio of the face center to the top of the photo, with a default value of 0.45.
top_distance_max float No The maximum ratio of the head to the top of the photo, with a default value of 0.12.
top_distance_min float No The minimum ratio of the head to the top of the photo, with a default value of 0.1.
brightness_strength float No Brightness adjustment strength, default is 0
contrast_strength float No Contrast adjustment strength, default is 0
sharpen_strength float No Sharpening adjustment strength, default is 0
saturation_strength float No Saturation adjustment strength, default is 0

Return Parameters:

Parameter Name Type Description
status str The status of the request, with a default value of success.
image_base64_standard str The base64 encoding of the standard ID photo.
image_base64_hd str The base64 encoding of the high-definition ID photo.

2. Add Background Color

API Name: add_background

The logic of the Add Background Color API is to receive an RGBA image (transparent image) and add a background color based on color, composing a JPG image.

Request Parameters:

Parameter Name Type Required Description
input_image file Choose one of input_image or input_image_base64 The input image file, which needs to be an RGB three-channel image.
input_image_base64 str Choose one of input_image or input_image_base64 The base64 encoding of the input image file, which needs to be an RGB three-channel image.
color str Yes The background color in hexadecimal format, e.g., #000000 for black.
kb int No The target file size in KB. If the specified KB value is less than the original file, it adjusts the compression rate. If the specified KB value is greater than the source file, it increases the KB value by adding information to the file header, aiming for the final size of the image to match the specified KB value.
render int No The rendering mode, with a default value of 0. Available values are 0, 1, and 2.
dpi int No The image resolution, with a default value of 300.

Return Parameters:

Parameter Name Type Description
status str The status of the request, with a default value of success.
image_base64 str The base64 encoding of the image with the background color added.

3. Generate Six-Inch Layout Photo

API Name: generate_layout_photos

The logic of the Generate Six-Inch Layout Photo API is to receive an RGB image (usually the ID photo after adding background color), arrange the photos based on size, and then generate a six-inch layout photo.

Request Parameters:

Parameter Name Type Required Description
input_image file Choose one of input_image or input_image_base64 The input image file, which needs to be an RGB three-channel image.
input_image_base64 str Choose one of input_image or input_image_base64 The base64 encoding of the input image file, which needs to be an RGB three-channel image.
height int No The height of the standard ID photo, with a default value of 413.
width int No The width of the standard ID photo, with a default value of 295.
kb int No The target file size in KB. If the specified KB value is less than the original file, it adjusts the compression rate. If the specified KB value is greater than the source file, it increases the KB value by adding information to the file header, aiming for the final size of the image to match the specified KB value.
dpi int No The image resolution, with a default value of 300.

Return Parameters:

Parameter Name Type Description
status str The status of the request, with a default value of success.
image_base64 str The base64 encoding of the six-inch layout photo.

4. Human Matting

API Name: human_matting

The logic of the Human Matting API is to receive an RGB image and output a standard matting portrait and a high-definition matting portrait (without any background filling).

Request Parameters:

Parameter Name Type Required Description
input_image file Choose one of input_image or input_image_base64 The input image file, which needs to be an RGB three-channel image.
input_image_base64 str Choose one of input_image or input_image_base64 The base64 encoding of the input image file, which needs to be an RGB three-channel image.
human_matting_model str No The human segmentation model, with a default value of modnet_photographic_portrait_matting. Available values are modnet_photographic_portrait_matting, hivision_modnet, rmbg-1.4, and birefnet-v1-lite.
dpi int No The image resolution, with a default value of 300.

Return Parameters:

Parameter Name Type Description
status str The status of the request, with a default value of success.
image_base64 str The base64 encoding of the human matting portrait.

5. Add Watermark to Image

API Name: watermark

The functionality of the Add Watermark to Image API is to receive a watermark text and add the specified watermark to the original image. Users can specify attributes such as the watermark's position, opacity, and size to seamlessly blend the watermark into the original image.

Request Parameters:

Parameter Name Type Required Description
input_image file Choose one of input_image or input_image_base64 The input image file, which needs to be an RGB three-channel image.
input_image_base64 str Choose one of input_image or input_image_base64 The base64 encoding of the input image file, which needs to be an RGB three-channel image.
text str Yes The watermark text to be added.
size int No The size of the watermark text, with a default value of 20.
opacity float No The opacity of the watermark text, with a default value of 0.5.
angle int No The angle of the watermark text, with a default value of 30.
color str No The color of the watermark text, with a default value of #000000.
space int No The space between the watermark text and the image, with a default value of 25.
dpi int No The image resolution, with a default value of 300.

Return Parameters:

Parameter Name Type Description
status str The status of the request, with a default value of success.

6. Set Image KB Size

API Name: set_kb

The functionality of the Set Image KB Size API is to receive an image and a target file size (in KB). If the specified KB value is less than the original file, it adjusts the compression rate. If the specified KB value is greater than the source file, it increases the KB value by adding information to the file header, aiming for the final size of the image to match the specified KB value.

Request Parameters:

Parameter Name Type Required Description
input_image file Choose one of input_image or input_image_base64 The input image file, which needs to be an RGB three-channel image.
input_image_base64 str Choose one of input_image or input_image_base64 The base64 encoding of the input image file, which needs to be an RGB three-channel image.
kb int Yes The target file size in KB.
dpi int No The image resolution, with a default value of 300.

Return Parameters:

Parameter Name Type Description
status str The status of the request, with a default value of success.
image_base64 str The base64 encoding of the image with the specified KB size.

7. ID Photo Cropping

API Name: idphoto_crop

The functionality of the ID Photo Cropping API is to receive an RGBA image (transparent image) and output a standard ID photo and a high-definition ID photo.

Request Parameters:

Parameter Name Type Required Description
input_image file Choose one of input_image or input_image_base64 The input image file, which needs to be an RGB three-channel image.
input_image_base64 str Choose one of input_image or input_image_base64 The base64 encoding of the input image file, which needs to be an RGB three-channel image.
height int Yes The height of the standard ID photo.
width int Yes The width of the standard ID photo.
face_detect_model str No The face detection model, with a default value of mtcnn. Available values are mtcnn, face_plusplus, and retinaface-resnet50.
hd bool No Whether to generate a high-definition ID photo, with a default value of true.
dpi int No The image resolution, with a default value of 300.
head_measure_ratio float No The ratio of the face area to the photo area, with a default value of 0.2.
head_height_ratio float No The ratio of the face center to the top of the photo, with a default value of 0.45.
top_distance_max float No The maximum ratio of the head to the top of the photo, with a default value of 0.12.
top_distance_min float No The minimum ratio of the head to the top of the photo, with a default value of 0.1.

Return Parameters:

Parameter Name Type Description
status str The status of the request, with a default value of success.
image_base64 str The base64 encoding of the ID photo.

cURL Request Examples

cURL is a command-line tool for transferring data using various network protocols. Here are examples of using cURL to call these APIs.

1. Generate ID Photo (Transparent Background)

curl -X POST "http://127.0.0.1:8080/idphoto" \
-F "input_image=@demo/images/test0.jpg" \
-F "height=413" \
-F "width=295" \
-F "human_matting_model=modnet_photographic_portrait_matting" \
-F "face_detect_model=mtcnn" \
-F "hd=true" \
-F "dpi=300" \
-F "face_alignment=true"

2. Add Background Color

curl -X POST "http://127.0.0.1:8080/add_background" \
-F "input_image=@test.png" \
-F "color=638cce" \
-F "kb=200" \
-F "render=0" \
-F "dpi=300"

3. Generate Six-Inch Layout Photo

curl -X POST "http://127.0.0.1:8080/generate_layout_photos" \
-F "input_image=@test.jpg" \
-F "height=413" \
-F "width=295" \
-F "kb=200" \
-F "dpi=300"

4. Human Matting

curl -X POST "http://127.0.0.1:8080/human_matting" \
-F "input_image=@demo/images/test0.jpg" \
-F "human_matting_model=modnet_photographic_portrait_matting" \
-F "dpi=300"

5. Add Watermark to Image

curl -X 'POST' \
  'http://127.0.0.1:8080/watermark?size=20&opacity=0.5&angle=30&color=%23000000&space=25' \
  -H 'accept: application/json' \
  -H 'Content-Type: multipart/form-data' \
  -F 'input_image=@demo/images/test0.jpg;type=image/jpeg' \
  -F 'text=Hello' \
  -F 'dpi=300'

6. Set Image KB Size

curl -X 'POST' \
  'http://127.0.0.1:8080/set_kb' \
  -H 'accept: application/json' \
  -H 'Content-Type: multipart/form-data' \
  -F 'input_image=@demo/images/test0.jpg;type=image/jpeg' \
  -F 'kb=50' \
  -F 'dpi=300'

7. ID Photo Cropping

curl -X 'POST' \
  'http://127.0.0.1:8080/idphoto_crop?head_measure_ratio=0.2&head_height_ratio=0.45&top_distance_max=0.12&top_distance_min=0.1' \
  -H 'accept: application/json' \
  -H 'Content-Type: multipart/form-data' \
  -F 'input_image=@idphoto_matting.png;type=image/png' \
  -F 'height=413' \
  -F 'width=295' \
  -F 'face_detect_model=mtcnn' \
  -F 'hd=true' \
  -F 'dpi=300'

Python Request Examples

1. Generate ID Photo (Transparent Background)

import requests

url = "http://127.0.0.1:8080/idphoto"
input_image_path = "demo/images/test0.jpg"

# Set request parameters
files = {"input_image": open(input_image_path, "rb")}
data = {
    "height": 413,
    "width": 295,
    "human_matting_model": "modnet_photographic_portrait_matting",
    "face_detect_model": "mtcnn",
    "hd": True,
    "dpi": 300,
    "face_alignment": True,
    "head_measure_ratio": 0.2,
    "head_height_ratio": 0.45,
    "top_distance_max": 0.12,
    "top_distance_min": 0.1,
    "brightness_strength": 0,
    "contrast_strength": 0,
    "sharpen_strength": 0,
    "saturation_strength": 0,
}

response = requests.post(url, files=files, data=data).json()

# response is a JSON formatted dictionary containing status, image_base64_standard, and image_base64_hd
print(response)

2. Add Background Color

import requests

url = "http://127.0.0.1:8080/add_background"
input_image_path = "test.png"

files = {"input_image": open(input_image_path, "rb")}
data = {
    "color": '638cce',
    "kb": None,
    "render": 0,
    "dpi": 300,
}

response = requests.post(url, files=files, data=data).json()

# response is a JSON formatted dictionary containing status and image_base64
print(response)

3. Generate Six-Inch Layout Photo

import requests

url = "http://127.0.0.1:8080/generate_layout_photos"
input_image_path = "test.jpg"

files = {"input_image": open(input_image_path, "rb")}
data = {
    "height": 413,
    "width": 295,
    "kb": 200,
    "dpi": 300,
}

response = requests.post(url, files=files, data=data).json()

# response is a JSON formatted dictionary containing status and image_base64
print(response)

4. Human Matting

import requests

url = "http://127.0.0.1:8080/human_matting"
input_image_path = "test.jpg"

files = {"input_image": open(input_image_path, "rb")}
data = {
    "human_matting_model": "modnet_photographic_portrait_matting",
    "dpi": 300,
}

response = requests.post(url, files=files, data=data).json()

# response is a JSON formatted dictionary containing status and image_base64
print(response)

5. Add Watermark to Image

import requests

# Set the request URL and parameters
url = "http://127.0.0.1:8080/watermark"
params = {
    "size": 20,
    "opacity": 0.5,
    "angle": 30,
    "color": "#000000",
    "space": 25,
}

# Set file and other form data
input_image_path = "demo/images/test0.jpg"
files = {"input_image": open(input_image_path, "rb")}
data = {"text": "Hello", "dpi": 300}

# Send POST request
response = requests.post(url, params=params, files=files, data=data)

# Check response
if response.ok:
    # Output response content
    print(response.json())
else:
    # Output error message
    print(f"Request failed with status code {response.status_code}: {response.text}")

6. Set Image KB Size

import requests

# Set the request URL
url = "http://127.0.0.1:8080/set_kb"

# Set file and other form data
input_image_path = "demo/images/test0.jpg"
files = {"input_image": open(input_image_path, "rb")}
data = {"kb": 50, "dpi": 300}

# Send POST request
response = requests.post(url, files=files, data=data)

# Check response
if response.ok:
    # Output response content
    print(response.json())
else:
    # Output error message
    print(f"Request failed with status code {response.status_code}: {response.text}")

7. ID Photo Cropping

import requests

# Set the request URL
url = "http://127.0.0.1:8080/idphoto_crop"

# Set file and other form data
input_image_path = "idphoto_matting.png"
files = {"input_image": ("idphoto_matting.png", open(input_image_path, "rb"), "image/png")}
data = {
    "height": 413,
    "width": 295,
    "face_detect_model": "mtcnn",
    "hd": "true",
    "dpi": 300,
    "head_measure_ratio": 0.2,
    "head_height_ratio": 0.45,
    "top_distance_max": 0.12,
    "top_distance_min": 0.1,
}

# Send POST request
response = requests.post(url, files=files, data=data)

# Check response
if response.ok:
    # Output response content
    print(response.json())
else:
    # Output error message
    print(f"Request failed with status code {response.status_code}: {response.text}")