English / 中文
- Before You Start: Start the Backend Service
- API Functionality Description
- cURL Request Examples
- Python Request Examples
Before making API requests, please run the backend service.
python deploy_api.py
API Name: idphoto
The logic of the Generate ID Photo
API is to send an RGB image and output a standard ID photo and a high-definition ID photo:
- High-definition ID Photo: An ID photo created based on the aspect ratio of
size
, with the filename having_hd
appended tooutput_image_dir
. - Standard ID Photo: The size equals
size
, scaled from the high-definition ID photo, with the filename asoutput_image_dir
.
It is important to note that both generated photos are transparent (RGBA four-channel images). To create a complete ID photo, you will also need to use the Add Background Color
API below.
Q: Why is it designed this way?
A: Because in actual products, users frequently switch background color preview effects, providing a transparent background image for the front-end JS code to composite colors is a better experience.
Request Parameters:
Parameter Name | Type | Required | Description |
---|---|---|---|
input_image | file | Choose one of input_image or input_image_base64 |
The input image file, which needs to be an RGB three-channel image. |
input_image_base64 | str | Choose one of input_image or input_image_base64 |
The base64 encoding of the input image file, which needs to be an RGB three-channel image. |
height | int | No | The height of the standard ID photo, with a default value of 413 . |
width | int | No | The width of the standard ID photo, with a default value of 295 . |
human_matting_model | str | No | The human segmentation model, with a default value of modnet_photographic_portrait_matting . Available values are modnet_photographic_portrait_matting , hivision_modnet , rmbg-1.4 , and birefnet-v1-lite . |
face_detect_model | str | No | The face detection model, with a default value of mtcnn . Available values are mtcnn , face_plusplus , and retinaface-resnet50 . |
hd | bool | No | Whether to generate a high-definition ID photo, with a default value of true . |
dpi | int | No | The image resolution, with a default value of 300 . |
face_alignment | bool | No | Whether to perform face alignment, with a default value of true . |
head_measure_ratio | float | No | The ratio of the face area to the photo area, with a default value of 0.2 . |
head_height_ratio | float | No | The ratio of the face center to the top of the photo, with a default value of 0.45 . |
top_distance_max | float | No | The maximum ratio of the head to the top of the photo, with a default value of 0.12 . |
top_distance_min | float | No | The minimum ratio of the head to the top of the photo, with a default value of 0.1 . |
brightness_strength | float | No | Brightness adjustment strength, default is 0 |
contrast_strength | float | No | Contrast adjustment strength, default is 0 |
sharpen_strength | float | No | Sharpening adjustment strength, default is 0 |
saturation_strength | float | No | Saturation adjustment strength, default is 0 |
Return Parameters:
Parameter Name | Type | Description |
---|---|---|
status | str | The status of the request, with a default value of success . |
image_base64_standard | str | The base64 encoding of the standard ID photo. |
image_base64_hd | str | The base64 encoding of the high-definition ID photo. |
API Name: add_background
The logic of the Add Background Color
API is to receive an RGBA image (transparent image) and add a background color based on color
, composing a JPG image.
Request Parameters:
Parameter Name | Type | Required | Description |
---|---|---|---|
input_image | file | Choose one of input_image or input_image_base64 |
The input image file, which needs to be an RGB three-channel image. |
input_image_base64 | str | Choose one of input_image or input_image_base64 |
The base64 encoding of the input image file, which needs to be an RGB three-channel image. |
color | str | Yes | The background color in hexadecimal format, e.g., #000000 for black. |
kb | int | No | The target file size in KB. If the specified KB value is less than the original file, it adjusts the compression rate. If the specified KB value is greater than the source file, it increases the KB value by adding information to the file header, aiming for the final size of the image to match the specified KB value. |
render | int | No | The rendering mode, with a default value of 0 . Available values are 0 , 1 , and 2 . |
dpi | int | No | The image resolution, with a default value of 300 . |
Return Parameters:
Parameter Name | Type | Description |
---|---|---|
status | str | The status of the request, with a default value of success . |
image_base64 | str | The base64 encoding of the image with the background color added. |
API Name: generate_layout_photos
The logic of the Generate Six-Inch Layout Photo
API is to receive an RGB image (usually the ID photo after adding background color), arrange the photos based on size
, and then generate a six-inch layout photo.
Request Parameters:
Parameter Name | Type | Required | Description |
---|---|---|---|
input_image | file | Choose one of input_image or input_image_base64 |
The input image file, which needs to be an RGB three-channel image. |
input_image_base64 | str | Choose one of input_image or input_image_base64 |
The base64 encoding of the input image file, which needs to be an RGB three-channel image. |
height | int | No | The height of the standard ID photo, with a default value of 413 . |
width | int | No | The width of the standard ID photo, with a default value of 295 . |
kb | int | No | The target file size in KB. If the specified KB value is less than the original file, it adjusts the compression rate. If the specified KB value is greater than the source file, it increases the KB value by adding information to the file header, aiming for the final size of the image to match the specified KB value. |
dpi | int | No | The image resolution, with a default value of 300 . |
Return Parameters:
Parameter Name | Type | Description |
---|---|---|
status | str | The status of the request, with a default value of success . |
image_base64 | str | The base64 encoding of the six-inch layout photo. |
API Name: human_matting
The logic of the Human Matting
API is to receive an RGB image and output a standard matting portrait and a high-definition matting portrait (without any background filling).
Request Parameters:
Parameter Name | Type | Required | Description |
---|---|---|---|
input_image | file | Choose one of input_image or input_image_base64 |
The input image file, which needs to be an RGB three-channel image. |
input_image_base64 | str | Choose one of input_image or input_image_base64 |
The base64 encoding of the input image file, which needs to be an RGB three-channel image. |
human_matting_model | str | No | The human segmentation model, with a default value of modnet_photographic_portrait_matting . Available values are modnet_photographic_portrait_matting , hivision_modnet , rmbg-1.4 , and birefnet-v1-lite . |
dpi | int | No | The image resolution, with a default value of 300 . |
Return Parameters:
Parameter Name | Type | Description |
---|---|---|
status | str | The status of the request, with a default value of success . |
image_base64 | str | The base64 encoding of the human matting portrait. |
API Name: watermark
The functionality of the Add Watermark to Image
API is to receive a watermark text and add the specified watermark to the original image. Users can specify attributes such as the watermark's position, opacity, and size to seamlessly blend the watermark into the original image.
Request Parameters:
Parameter Name | Type | Required | Description |
---|---|---|---|
input_image | file | Choose one of input_image or input_image_base64 |
The input image file, which needs to be an RGB three-channel image. |
input_image_base64 | str | Choose one of input_image or input_image_base64 |
The base64 encoding of the input image file, which needs to be an RGB three-channel image. |
text | str | Yes | The watermark text to be added. |
size | int | No | The size of the watermark text, with a default value of 20 . |
opacity | float | No | The opacity of the watermark text, with a default value of 0.5 . |
angle | int | No | The angle of the watermark text, with a default value of 30 . |
color | str | No | The color of the watermark text, with a default value of #000000 . |
space | int | No | The space between the watermark text and the image, with a default value of 25 . |
dpi | int | No | The image resolution, with a default value of 300 . |
Return Parameters:
Parameter Name | Type | Description |
---|---|---|
status | str | The status of the request, with a default value of success . |
API Name: set_kb
The functionality of the Set Image KB Size
API is to receive an image and a target file size (in KB). If the specified KB value is less than the original file, it adjusts the compression rate. If the specified KB value is greater than the source file, it increases the KB value by adding information to the file header, aiming for the final size of the image to match the specified KB value.
Request Parameters:
Parameter Name | Type | Required | Description |
---|---|---|---|
input_image | file | Choose one of input_image or input_image_base64 |
The input image file, which needs to be an RGB three-channel image. |
input_image_base64 | str | Choose one of input_image or input_image_base64 |
The base64 encoding of the input image file, which needs to be an RGB three-channel image. |
kb | int | Yes | The target file size in KB. |
dpi | int | No | The image resolution, with a default value of 300 . |
Return Parameters:
Parameter Name | Type | Description |
---|---|---|
status | str | The status of the request, with a default value of success . |
image_base64 | str | The base64 encoding of the image with the specified KB size. |
API Name: idphoto_crop
The functionality of the ID Photo Cropping
API is to receive an RGBA image (transparent image) and output a standard ID photo and a high-definition ID photo.
Request Parameters:
Parameter Name | Type | Required | Description |
---|---|---|---|
input_image | file | Choose one of input_image or input_image_base64 |
The input image file, which needs to be an RGB three-channel image. |
input_image_base64 | str | Choose one of input_image or input_image_base64 |
The base64 encoding of the input image file, which needs to be an RGB three-channel image. |
height | int | Yes | The height of the standard ID photo. |
width | int | Yes | The width of the standard ID photo. |
face_detect_model | str | No | The face detection model, with a default value of mtcnn . Available values are mtcnn , face_plusplus , and retinaface-resnet50 . |
hd | bool | No | Whether to generate a high-definition ID photo, with a default value of true . |
dpi | int | No | The image resolution, with a default value of 300 . |
head_measure_ratio | float | No | The ratio of the face area to the photo area, with a default value of 0.2 . |
head_height_ratio | float | No | The ratio of the face center to the top of the photo, with a default value of 0.45 . |
top_distance_max | float | No | The maximum ratio of the head to the top of the photo, with a default value of 0.12 . |
top_distance_min | float | No | The minimum ratio of the head to the top of the photo, with a default value of 0.1 . |
Return Parameters:
Parameter Name | Type | Description |
---|---|---|
status | str | The status of the request, with a default value of success . |
image_base64 | str | The base64 encoding of the ID photo. |
cURL is a command-line tool for transferring data using various network protocols. Here are examples of using cURL to call these APIs.
curl -X POST "http://127.0.0.1:8080/idphoto" \
-F "input_image=@demo/images/test0.jpg" \
-F "height=413" \
-F "width=295" \
-F "human_matting_model=modnet_photographic_portrait_matting" \
-F "face_detect_model=mtcnn" \
-F "hd=true" \
-F "dpi=300" \
-F "face_alignment=true"
curl -X POST "http://127.0.0.1:8080/add_background" \
-F "input_image=@test.png" \
-F "color=638cce" \
-F "kb=200" \
-F "render=0" \
-F "dpi=300"
curl -X POST "http://127.0.0.1:8080/generate_layout_photos" \
-F "input_image=@test.jpg" \
-F "height=413" \
-F "width=295" \
-F "kb=200" \
-F "dpi=300"
curl -X POST "http://127.0.0.1:8080/human_matting" \
-F "input_image=@demo/images/test0.jpg" \
-F "human_matting_model=modnet_photographic_portrait_matting" \
-F "dpi=300"
curl -X 'POST' \
'http://127.0.0.1:8080/watermark?size=20&opacity=0.5&angle=30&color=%23000000&space=25' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'input_image=@demo/images/test0.jpg;type=image/jpeg' \
-F 'text=Hello' \
-F 'dpi=300'
curl -X 'POST' \
'http://127.0.0.1:8080/set_kb' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'input_image=@demo/images/test0.jpg;type=image/jpeg' \
-F 'kb=50' \
-F 'dpi=300'
curl -X 'POST' \
'http://127.0.0.1:8080/idphoto_crop?head_measure_ratio=0.2&head_height_ratio=0.45&top_distance_max=0.12&top_distance_min=0.1' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'input_image=@idphoto_matting.png;type=image/png' \
-F 'height=413' \
-F 'width=295' \
-F 'face_detect_model=mtcnn' \
-F 'hd=true' \
-F 'dpi=300'
import requests
url = "http://127.0.0.1:8080/idphoto"
input_image_path = "demo/images/test0.jpg"
# Set request parameters
files = {"input_image": open(input_image_path, "rb")}
data = {
"height": 413,
"width": 295,
"human_matting_model": "modnet_photographic_portrait_matting",
"face_detect_model": "mtcnn",
"hd": True,
"dpi": 300,
"face_alignment": True,
"head_measure_ratio": 0.2,
"head_height_ratio": 0.45,
"top_distance_max": 0.12,
"top_distance_min": 0.1,
"brightness_strength": 0,
"contrast_strength": 0,
"sharpen_strength": 0,
"saturation_strength": 0,
}
response = requests.post(url, files=files, data=data).json()
# response is a JSON formatted dictionary containing status, image_base64_standard, and image_base64_hd
print(response)
import requests
url = "http://127.0.0.1:8080/add_background"
input_image_path = "test.png"
files = {"input_image": open(input_image_path, "rb")}
data = {
"color": '638cce',
"kb": None,
"render": 0,
"dpi": 300,
}
response = requests.post(url, files=files, data=data).json()
# response is a JSON formatted dictionary containing status and image_base64
print(response)
import requests
url = "http://127.0.0.1:8080/generate_layout_photos"
input_image_path = "test.jpg"
files = {"input_image": open(input_image_path, "rb")}
data = {
"height": 413,
"width": 295,
"kb": 200,
"dpi": 300,
}
response = requests.post(url, files=files, data=data).json()
# response is a JSON formatted dictionary containing status and image_base64
print(response)
import requests
url = "http://127.0.0.1:8080/human_matting"
input_image_path = "test.jpg"
files = {"input_image": open(input_image_path, "rb")}
data = {
"human_matting_model": "modnet_photographic_portrait_matting",
"dpi": 300,
}
response = requests.post(url, files=files, data=data).json()
# response is a JSON formatted dictionary containing status and image_base64
print(response)
import requests
# Set the request URL and parameters
url = "http://127.0.0.1:8080/watermark"
params = {
"size": 20,
"opacity": 0.5,
"angle": 30,
"color": "#000000",
"space": 25,
}
# Set file and other form data
input_image_path = "demo/images/test0.jpg"
files = {"input_image": open(input_image_path, "rb")}
data = {"text": "Hello", "dpi": 300}
# Send POST request
response = requests.post(url, params=params, files=files, data=data)
# Check response
if response.ok:
# Output response content
print(response.json())
else:
# Output error message
print(f"Request failed with status code {response.status_code}: {response.text}")
import requests
# Set the request URL
url = "http://127.0.0.1:8080/set_kb"
# Set file and other form data
input_image_path = "demo/images/test0.jpg"
files = {"input_image": open(input_image_path, "rb")}
data = {"kb": 50, "dpi": 300}
# Send POST request
response = requests.post(url, files=files, data=data)
# Check response
if response.ok:
# Output response content
print(response.json())
else:
# Output error message
print(f"Request failed with status code {response.status_code}: {response.text}")
import requests
# Set the request URL
url = "http://127.0.0.1:8080/idphoto_crop"
# Set file and other form data
input_image_path = "idphoto_matting.png"
files = {"input_image": ("idphoto_matting.png", open(input_image_path, "rb"), "image/png")}
data = {
"height": 413,
"width": 295,
"face_detect_model": "mtcnn",
"hd": "true",
"dpi": 300,
"head_measure_ratio": 0.2,
"head_height_ratio": 0.45,
"top_distance_max": 0.12,
"top_distance_min": 0.1,
}
# Send POST request
response = requests.post(url, files=files, data=data)
# Check response
if response.ok:
# Output response content
print(response.json())
else:
# Output error message
print(f"Request failed with status code {response.status_code}: {response.text}")