-
Notifications
You must be signed in to change notification settings - Fork 9
/
m3_server.py
154 lines (130 loc) · 6.66 KB
/
m3_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from FlagEmbedding import BGEM3FlagModel
from typing import List, Tuple, Union, cast
import asyncio
from fastapi import FastAPI, Request, Response, HTTPException
from starlette.status import HTTP_504_GATEWAY_TIMEOUT
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from uuid import uuid4
import time
from concurrent.futures import ThreadPoolExecutor
batch_size = 2 # gpu batch_size in order of your available vram
max_request = 10 # max request for future improvements on api calls / gpu batches (for now is pretty basic)
max_length = 5000 # max context length for embeddings and passages in re-ranker
max_q_length = 256 # max context lenght for questions in re-ranker
request_flush_timeout = .1 # flush time out for future improvements on api calls / gpu batches (for now is pretty basic)
rerank_weights = [0.4, 0.2, 0.4] # re-rank score weights
request_time_out = 30 # Timeout threshold
gpu_time_out = 5 # gpu processing timeout threshold
port= 3000
class m3Wrapper:
def __init__(self, model_name: str, device: str = 'cuda'):
self.model = BGEM3FlagModel(model_name, device=device, use_fp16=True if device != 'cpu' else False)
def embed(self, sentences: List[str]) -> List[List[float]]:
embeddings = self.model.encode(sentences, batch_size=batch_size, max_length=max_length)['dense_vecs']
embeddings = embeddings.tolist()
return embeddings
def rerank(self, sentence_pairs: List[Tuple[str, str]]) -> List[float]:
scores = self.model.compute_score(
sentence_pairs,
batch_size=batch_size,
max_query_length=max_q_length,
max_passage_length=max_length,
weights_for_different_modes=rerank_weights
)['colbert+sparse+dense']
return scores
class EmbedRequest(BaseModel):
sentences: List[str]
class RerankRequest(BaseModel):
sentence_pairs: List[Tuple[str, str]]
class EmbedResponse(BaseModel):
embeddings: List[List[float]]
class RerankResponse(BaseModel):
scores: List[float]
class RequestProcessor:
def __init__(self, model: m3Wrapper, max_request_to_flush: int, accumulation_timeout: float):
self.model = model
self.max_batch_size = max_request_to_flush
self.accumulation_timeout = accumulation_timeout
self.queue = asyncio.Queue()
self.response_futures = {}
self.processing_loop_task = None
self.processing_loop_started = False # Processing pool flag lazy init state
self.executor = ThreadPoolExecutor() # Thread pool
self.gpu_lock = asyncio.Semaphore(1) # Sem for gpu sync usage
async def ensure_processing_loop_started(self):
if not self.processing_loop_started:
print('starting processing_loop')
self.processing_loop_task = asyncio.create_task(self.processing_loop())
self.processing_loop_started = True
async def processing_loop(self):
while True:
requests, request_types, request_ids = [], [], []
start_time = asyncio.get_event_loop().time()
while len(requests) < self.max_batch_size:
timeout = self.accumulation_timeout - (asyncio.get_event_loop().time() - start_time)
if timeout <= 0:
break
try:
req_data, req_type, req_id = await asyncio.wait_for(self.queue.get(), timeout=timeout)
requests.append(req_data)
request_types.append(req_type)
request_ids.append(req_id)
except asyncio.TimeoutError:
break
if requests:
await self.process_requests_by_type(requests, request_types, request_ids)
async def process_requests_by_type(self, requests, request_types, request_ids):
tasks = []
for request_data, request_type, request_id in zip(requests, request_types, request_ids):
if request_type == 'embed':
task = asyncio.create_task(self.run_with_semaphore(self.model.embed, request_data.sentences, request_id))
else: # 'rerank'
task = asyncio.create_task(self.run_with_semaphore(self.model.rerank, request_data.sentence_pairs, request_id))
tasks.append(task)
await asyncio.gather(*tasks)
async def run_with_semaphore(self, func, data, request_id):
async with self.gpu_lock: # Wait for sem
future = self.executor.submit(func, data)
try:
result = await asyncio.wait_for(asyncio.wrap_future(future), timeout= gpu_time_out)
self.response_futures[request_id].set_result(result)
except asyncio.TimeoutError:
self.response_futures[request_id].set_exception(TimeoutError("GPU processing timeout"))
except Exception as e:
self.response_futures[request_id].set_exception(e)
async def process_request(self, request_data: Union[EmbedRequest, RerankRequest], request_type: str):
try:
await self.ensure_processing_loop_started()
request_id = str(uuid4())
self.response_futures[request_id] = asyncio.Future()
await self.queue.put((request_data, request_type, request_id))
return await self.response_futures[request_id]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal Server Error {e}")
app = FastAPI()
# Initialize the model and request processor
model = m3Wrapper('BAAI/bge-m3')
processor = RequestProcessor(model, accumulation_timeout= request_flush_timeout, max_request_to_flush= max_request)
# Adding a middleware returning a 504 error if the request processing time is above a certain threshold
@app.middleware("http")
async def timeout_middleware(request: Request, call_next):
try:
start_time = time.time()
return await asyncio.wait_for(call_next(request), timeout=request_time_out)
except asyncio.TimeoutError:
process_time = time.time() - start_time
return JSONResponse({'detail': 'Request processing time excedeed limit',
'processing_time': process_time},
status_code=HTTP_504_GATEWAY_TIMEOUT)
@app.post("/embeddings/", response_model=EmbedResponse)
async def get_embeddings(request: EmbedRequest):
embeddings = await processor.process_request(request, 'embed')
return EmbedResponse(embeddings=embeddings)
@app.post("/rerank/", response_model=RerankResponse)
async def rerank(request: RerankRequest):
scores = await processor.process_request(request, 'rerank')
return RerankResponse(scores=scores)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port= port)