forked from cyclic-software/starter-micro-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
168 lines (134 loc) · 6.13 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
from flask import Flask, render_template, request, redirect, url_for, flash
from werkzeug import secure_filename
from keras.models import load_model
from backprop import *
from backprop2 import *
import tensorflow as tf
import json
UPLOAD_FOLDER_TRAINING = './media/data_training'
UPLOAD_FOLDER_TESTING = './media/data_testing'
UPLOAD_FOLDER_MODEL = './media/model'
UPLOAD_FOLDER_PREDIKSI = './media/data_prediksi'
nama_training = "training.xlsx"
nama_testing = "testing.xlsx"
nama_model = "model_backprop.h5"
dir_training = "./media/data_training/"
dir_testing = "./media/data_testing/"
dir_model = "./media/model/"
app = Flask(__name__)
app.config['UPLOAD_FOLDER_TRAINING'] = UPLOAD_FOLDER_TRAINING
app.config['UPLOAD_FOLDER_TESTING'] = UPLOAD_FOLDER_TESTING
app.config['UPLOAD_FOLDER_MODEL'] = UPLOAD_FOLDER_MODEL
app.config['UPLOAD_FOLDER_PREDIKSI'] = UPLOAD_FOLDER_PREDIKSI
@app.route('/')
@app.route('/home')
def index():
return render_template('home.html')
# @app.route('/data_training')
# def data_training():
# data_training = read_file(dir_training+nama_training)
# jumlah_data = len(data_training)
# return render_template('view_data_training.html', data_training = data_training, jumlah_data=jumlah_data)
####data testing###
#@app.route('/data_testing')
#def data_testing():
# data_testing = read_file(dir_testing+nama_testing)
# jumlah_data = len(data_testing)
# return render_template('view_data_testing.html', data_testing = data_testing, jumlah_data=jumlah_data)
@app.route('/data_training', methods = ['GET', 'POST'])
def upload_training():
if request.method == 'POST':
if 'upload_training' in request.form:
filelist = [ f for f in os.listdir(dir_training) if f.endswith(".xlsx") ]
for f in filelist:
os.remove(os.path.join(dir_training, f))
f = request.files['filetraining']
filename = secure_filename(f.filename)
f.save(os.path.join(app.config['UPLOAD_FOLDER_TRAINING'], filename))
nama_awal = filename
nama_baru = nama_training
os.rename(dir_training+nama_awal,dir_training+nama_baru)
training = read_file(dir_training+nama_baru)
return redirect(url_for('upload_training'))
data_training = read_file(dir_training+nama_training)
jumlah_data = len(data_training)
return render_template('view_data_training.html', data_training = data_training, jumlah_data=jumlah_data)
#return render_template('view_data_training.html', data_training = data_training)
#if 'upload_testing' in request.form:
# filelist = [ f for f in os.listdir(dir_testing) if f.endswith(".xlsx") ]
# for f in filelist:
# os.remove(os.path.join(dir_testing, f))
#f = request.files['filetesting']
#filename = secure_filename(f.filename)
#f.save(os.path.join(app.config['UPLOAD_FOLDER_TESTING'], filename))
#nama_awal = filename
#nama_baru = nama_testing
#os.rename(dir_testing+nama_awal,dir_testing+nama_baru)
#testing = read_file(dir_testing+nama_baru)
#return 'file uploaded successfully {}'.format(testing)
#return redirect(url_for('data_testing'))
@app.route('/prediksi', methods = ['GET', 'POST'])
def prediksi():
if request.method == "POST":
if 'upload_prediksi' in request.form:
filelist = [ f for f in os.listdir('./media/data_prediksi') if f.endswith(".xlsx") ]
for f in filelist:
os.remove(os.path.join('./media/data_prediksi', f))
f = request.files['fileprediksi']
filename = secure_filename(f.filename)
f.save(os.path.join(app.config['UPLOAD_FOLDER_PREDIKSI'], filename))
nama_awal = filename
nama_baru = nama_testing
os.rename('./media/data_prediksi/'+filename,'./media/data_prediksi/prediksi.xlsx')
testing = read_file('./media/data_prediksi/prediksi.xlsx')
hasil_prediksi = prediksi_jwb_file('./media/data_prediksi/prediksi.xlsx')
print (hasil_prediksi)
memuaskan, cumlaude, baik, cukup, kurang = hitung(hasil_prediksi)
data_grafik = [memuaskan, cumlaude, baik, cukup, kurang]
print(data_grafik)
#return render_template('test.html')
return render_template('test.html', hasil_prediksi = hasil_prediksi, data_grafik = data_grafik )
if 'prediksi' in request.form:
f = request.form
x1 = f['x1']
x2 = f['x2']
x3 = f['x3']
x4 = f['x4']
x5 = f['x5']
x6 = f['x6']
x7 = f['x7']
hasil = prediksi_jwb(x1,x2,x3,x4,x5,x6,x7)
#return "hasil {}".format(hasil)
return render_template('hasil.html', hasil = hasil)
file = './media/data_training/training.xlsx'
model = "./media/model/model_backprop.h5"
#x, y = load_data(file)
score = scoress(model, file)
name = score
#return "hasil {}".format(hasil)
return render_template('prediksi.html', name = name)
@app.route('/backpropagation', methods = ['GET', 'POST'])
def backpropagation():
if request.method == 'POST':
h_l = []
a_l = []
f = request.form
print(len(f))
lr = float(f['learning_rate'])
learning_rate = float(lr)
epo = f['epochs']
epoch = int(epo)
h_l = f.getlist('hl[]')
a_l = f.getlist('al[]')
file = './media/data_training/training.xlsx'
x, y = load_data(file)
#X_train, X_test, Y_train, Y_test = train_test(x, y)
#backprop, matriks, skor = train(x, y, learning_rate = lr, n_epochs = epoch)
backprop, matriks, skor = train2(x, y, learning_rate = lr, n_epochs = epoch, layerx= h_l, aktivx = a_l)#, learning_rate = learning_rate, n_epochs = epochs)
return "Sukses kakak, learning_rate = {},epoch = {}, akurasi = {} ".format(lr,epoch, skor)
return render_template('backpropagation.html')
if __name__ == '__main__':
app.jinja_env.auto_reload = True
app.config['TEMPLATES_AUTO_RELOAD'] = True
app.run(debug=True)