-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJuris_CSV_to_SQL.py
201 lines (168 loc) · 8.49 KB
/
Juris_CSV_to_SQL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 25 15:38:37 2018
@author: AYang
Project: 2017 housing permit inventory
Task: convert jurisdictions' 2017 permit from csv file to SQL database
"""
import pandas as pd
import pyodbc
import numpy as np
import os
def read_data(DATA_PATH, COUNTY, COUNTY_CODE, JURI):
juri_name = 't' + COUNTY_CODE + JURI + '_final.txt'
my_juri = pd.DataFrame.from_csv(os.path.join(DATA_PATH, COUNTY, juri_name), sep=',', index_col=None)
return my_juri
# add more columns to process duplicated data and other usages, from current year to previous years
def data_process(my_data, col1):
## add some columns
my_data[col1] = 0
if 'PIN_PARENT' not in my_data.columns:
my_data['PIN_PARENT'] = np.nan
if 'COUNTY' not in my_data.columns:
my_data['COUNTY'] = COUNTY
# reorder the csv table columns, so it could line up with the SQL table columns. It is important in the data type specification, apple to apple.
my_data = my_data[[u'ID', u'PSRCIDN', u'PERMITNO', u'SORT', u'MULTIREC', u'PIN',
u'ADDRESS', u'HOUSENO', u'PREFIX', u'STRNAME', u'STRTYPE', u'SUFFIX',
u'UNIT_BLD', u'ZIP', u'ISSUED', u'FINALED', u'STATUS', u'TYPE', u'PS',
u'UNITS', u'BLDGS', u'LANDUSE', u'CONDO', u'VALUE', u'ZONING', u'NOTES',
u'NOTES2', u'NOTES3', u'NOTES4', u'NOTES5', u'NOTES6', u'NOTES7',
u'LOTSIZE', u'JURIS', u'JURIS15', u'PLC', u'PLC15', u'PROJYEAR',
u'CNTY', u'MULTCNTY', u'PSRCID', u'PSRCIDXY', u'X_COORD', u'Y_COORD',
u'RUNTYPE', u'CHECK_DUPLICATED', u'PIN_PARENT', u'COUNTY']]
return my_data
## convert empty string as numpy nan value
'''
replace panda or numpy value none to NULL, or the SQL server won't recogonize the NULL value.
referrence: https://stackoverflow.com/questions/14162723/replacing-pandas-or-numpy-nan-with-a-none-to-use-with-mysqldb
'''
def process_null_data(my_data):
my_data.replace('', np.nan, inplace=True)
print (np.where(my_data.applymap(lambda x: x == '')))
my_data = my_data.where((pd.notnull(my_data)), None)
return my_data
## get the existing table list from the SQL database
def get_table_from_elmer():
table_names = []
for rows in cursor.tables():
if rows.table_type == "TABLE":
table_names.append(rows.table_name)
return table_names
## if the table name already duplicated in the SQL database (Sandbox here), then delete the previous table! Please be very careful of this step!!!!
def check_duplicated_table(table_names, my_tablename):
table_exists = my_tablename in table_names
if table_exists == True:
print 'There is currently a table named ' + my_tablename + ', removing the older table'
sql_statement = 'drop table ' + my_tablename
cursor.execute(sql_statement)
sql_conn.commit()
## get column list from original csv table, to help construct the SQL data table
def get_col_list(my_data):
str_c = ''
for c in final_data.columns.tolist()[0:]:
print c
str_c = str_c + '[' + c + '],'
str_c = str_c[:-1]
print ('data table column names are')
print (str_c)
return str_c
## create data table structure in SQL and specific data types
def create_data_table_in_SQL(sql_statement):
cursor.execute(sql_statement)
sql_conn.commit()
# insert data into table
def insert_data_into_SQL(my_data, str_c, my_tablename):
for index,row in my_data.iterrows():
#print (index)
#print (row)
sql_state = 'INSERT INTO ' + my_tablename + '(' + str_c + ')' + 'values (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)'
cursor.execute(sql_state, row['ID'],row['PSRCIDN'],row['PERMITNO'],row['SORT'],row['MULTIREC'],
row['PIN'],row['ADDRESS'],row['HOUSENO'],row['PREFIX'],row['STRNAME'],
row['STRTYPE'],row['SUFFIX'],row['UNIT_BLD'],row['ZIP'],row['ISSUED'],
row['FINALED'],row['STATUS'],row['TYPE'],row['PS'],row['UNITS'],
row['BLDGS'],row['LANDUSE'],row['CONDO'],row['VALUE'],row['ZONING'],
row['NOTES'],row['NOTES2'],row['NOTES3'],row['NOTES4'],row['NOTES5'],
row['NOTES6'],row['NOTES7'],row['LOTSIZE'],
row['JURIS'],row['JURIS15'],row['PLC'],row['PLC15'],row['PROJYEAR'],
row['CNTY'],row['MULTCNTY'],row['PSRCID'],row['PSRCIDXY'],row['X_COORD'],
row['Y_COORD'],row['RUNTYPE'],row['CHECK_DUPLICATED'], row['PIN_PARENT'],row['COUNTY'])
sql_conn.commit()
################################ START THE PROCESS #####################################
## 1. SQL Connection to our internal SQL database Elmer
sql_conn = pyodbc.connect('DRIVER={SQL Server}; SERVER=sql2016\DSADEV;DATABASE=Sandbox;trusted_connection=true')
cursor = sql_conn.cursor()
## 2. prepare data
## get the data and prepare the data for SQL read
KITSAP_JURIS = ['BREMERTON', 'PORTORCHARD', 'POULSBO', 'UNINCORPORATED']
#JURI = 'POULSBO'
for JURI in KITSAP_JURIS:
COUNTY = 'Kitsap'
COUNTY_CODE = '35'
DATA_PATH = r'J:\Projects\Permits\17Permit\database\working'
my_tablename = JURI + '17'
## set up the SQL data table structure (the data types would change from table to table)
sql_statement1 = 'create table ' + my_tablename
sql_statement2 = '( ' + \
'ID INT NULL, ' + \
'PSRCIDN varchar(255) NULL, ' + \
'PERMITNO varchar(255) NULL, ' + \
'SORT varchar(255) NULL, ' + \
'MULTIREC varchar(255) NULL, ' + \
'PIN varchar(255) NULL, ' + \
'ADDRESS varchar(255) NULL, ' + \
'HOUSENO varchar(255) NULL, ' + \
'PREFIX varchar(255) NULL, ' + \
'STRNAME varchar(255) NULL, ' + \
'STRTYPE varchar(255) NULL, ' + \
'SUFFIX varchar(255) NULL, ' + \
'UNIT_BLD varchar(255) NULL, ' + \
'ZIP INT NULL, ' + \
'ISSUED datetime NULL, ' + \
'FINALED datetime NULL, ' + \
'STATUS varchar(255) NULL, ' + \
'TYPE INT NULL, ' + \
'PS INT NULL, ' + \
'UNITS varchar(255) NULL, ' + \
'BLDGS varchar(255) NULL, ' + \
'LANDUSE varchar(255) NULL, ' + \
'CONDO varchar(255) NULL, ' + \
'VALUE varchar(255) NULL, ' + \
'ZONING varchar(255) NULL, ' + \
'NOTES varchar(255) NULL, ' + \
'NOTES2 varchar(255) NULL, ' + \
'NOTES3 varchar(255) NULL, ' + \
'NOTES4 varchar(255) NULL, ' + \
'NOTES5 varchar(255) NULL, ' + \
'NOTES6 varchar(255) NULL, ' + \
'NOTES7 varchar(255) NULL, ' + \
'LOTSIZE varchar(255) NULL, ' + \
'JURIS varchar(255) NULL, ' + \
'JURIS15 INT NULL, ' + \
'PLC INT NULL, ' + \
'PLC15 varchar(255) NULL, ' + \
'PROJYEAR INT NULL, ' + \
'CNTY INT NULL, ' + \
'MULTCNTY varchar(255) NULL, ' + \
'PSRCID varchar(255) NULL, ' + \
'PSRCIDXY varchar(255) NULL, ' + \
'X_COORD varchar(255) NULL, ' + \
'Y_COORD varchar(255) NULL, ' + \
'RUNTYPE INT NULL, '+\
'CHECK_DUPLICATED INT NULL, ' +\
'PIN_PARENT varchar(255) NULL, ' + \
'COUNTY varchar(255) NULL)'
final_data = read_data(DATA_PATH, COUNTY, COUNTY_CODE, JURI)
final_data = data_process(final_data, 'CHECK_DUPLICATED')
final_data = process_null_data(final_data)
table_names = get_table_from_elmer()
print table_names
check_duplicated_table(table_names, my_tablename)
str_c = get_col_list(final_data)
## 3. exactive the SQL process
sql_statement = sql_statement1 + sql_statement2
create_data_table_in_SQL(sql_statement)
insert_data_into_SQL(final_data, str_c, my_tablename)
print (JURI)
print ('-----------------finished------------------')
print ('Closing the central database')
sql_conn.close()