-
Notifications
You must be signed in to change notification settings - Fork 6
/
demo.py
282 lines (234 loc) · 9.56 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Author: Yuru Jia
# Last Modified: 2023-12-15
import os
import os.path as osp
import random
import logging
import argparse
import json
import numpy as np
import torch
from PIL import Image
from diffusers import DDIMScheduler
from diffusers import AutoencoderKL
from controlnet.controlnet_model import ControlNetModel
from controlnet.tools.training_classes import (
get_class_stacks,
make_one_hot,
get_cs_classes,
map_label2RGB
)
from controlnet.pipeline_refine import StableDiffusionControlNetRefinePipeline
from controlnet.tools.refine import get_connected_components, encode_latents
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a ControlNet inference script.")
parser.add_argument(
"--output_folder",
type=str,
default="./example_data/output",
help="output image save path",
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=20,
help="Number of inference steps.",
)
parser.add_argument(
"--num_generated_images",
type=int,
default=1,
help="Number of generated images per prompt.",
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help="Crop resolution.",
)
parser.add_argument(
"--gen_file",
type=str,
default="./example_data/gen_file.json",
help="Label files to be generated.",
)
parser.add_argument(
"--multidiffusion_rescale_factor",
type=int,
default=2,
help="Rescale factor for multidiffusion."
)
parser.add_argument(
"--comp_area_thre_la",
type=int,
default=30000,
help="Minimum area for large connected components."
)
parser.add_argument(
"--multi_scale",
type=int,
default=1,
help="1: use connected components analysis, 0: no connected components analysis."
)
parser.add_argument(
"--multi_diff_stride",
type=int,
default=16,
help="Stride for multi-diffusion."
)
parser.add_argument(
"--weather_prompt",
type=list,
default=["snowy", "rainy", "sunny", "foggy", "night"],
help="Diversify prompts from perspective of weather conditions."
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
def visualize_generated_image_grid(img_gen, img_mask, resolution=512):
vis_grid = Image.new('RGB', (resolution * 3, resolution), (255, 255, 255))
vis_grid.paste(img_gen, (0, 0))
vis_grid.paste(Image.fromarray(map_label2RGB(img_mask)), (resolution, 0))
vis_grid.paste(Image.blend(img_gen, Image.fromarray(map_label2RGB(img_mask)), 0.5),
(resolution* 2, 0, resolution * 3, resolution))
return vis_grid
def get_random_crop_rcs(label_map, c, rng, crop_size=512, resize_ratio=1.0):
if isinstance(label_map, str):
label_map = Image.open(label_map)
label_map_arr = np.array(label_map)
indices = np.where(label_map_arr == c)
w, h = label_map.size
# resize image
if resize_ratio != 1.0:
label_map = label_map.resize((int(w * resize_ratio), int(h * resize_ratio)), Image.NEAREST)
w, h = label_map.size
indices = np.where(label_map_arr == c)
for _ in range(10):
# idx = np.random.randint(0, len(indices[0]) - 1)
idx = rng.integers(0, len(indices[0]) - 1)
y, x = indices[0][idx], indices[1][idx]
x1 = min(max(0, x - crop_size // 2), w - crop_size)
y1 = min(max(0, y - crop_size // 2), h - crop_size)
x2 = x1 + crop_size
y2 = y1 + crop_size
if np.sum(label_map_arr[y1:y2, x1:x2] == c) > 0.01 * crop_size * crop_size:
break
new_condition_img = label_map.crop((x1, y1, x2, y2))
new_texts = get_class_stacks(new_condition_img)
crop_results = {
"crop_coords": (x1, y1, x2, y2),
"crop_condition_img": new_condition_img,
"crop_texts": new_texts,
}
return crop_results
def main(args):
controlnet = ControlNetModel.from_pretrained("yurujaja/DGInStyle",
subfolder="ControlNet_UNet-S", revision=None)
# prepare the model and the pipeline
vae = AutoencoderKL.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="vae", revision=None)
vae.requires_grad_(False)
vae.to("cuda", dtype=torch.float32)
pipe = StableDiffusionControlNetRefinePipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
gen_seed = 0
generator = torch.manual_seed(gen_seed)
rng = np.random.default_rng(gen_seed)
# create output folder
out_dir = args.output_folder
os.makedirs(out_dir, exist_ok=True)
out_dir_img= osp.join(out_dir, "images")
os.makedirs(out_dir_img, exist_ok=True)
out_dir_label= osp.join(out_dir, "labels")
os.makedirs(out_dir_label, exist_ok=True)
out_dir_vis= osp.join(out_dir, "vis")
os.makedirs(out_dir_vis, exist_ok=True)
# config logging file
logging.basicConfig(filename=os.path.join(out_dir, f"gen.log"), level=logging.INFO)
# Read label file as input
with open(args.gen_file, 'r') as of:
gen_label_files = json.load(of)
for i in range(len(gen_label_files)):
c = int(gen_label_files[i]["class"])
label_map = gen_label_files[i]["file_name"]
label_file_id = os.path.basename(label_map).replace("_labelTrainIds.png", "")
label_map = Image.open(label_map)
# get the original condition image which is cropped from the original label map with crop size 512
rcs_crop_results = get_random_crop_rcs(label_map, c, rng, crop_size=args.resolution)
crop_condition_img = np.array(rcs_crop_results["crop_condition_img"])
prompt = rcs_crop_results["crop_texts"]
weather_prompt = None
if np.random.rand() < 0.5 and args.weather_prompt is not None:
weather_prompt = np.random.choice(args.weather_prompt)
prompt = "A city street scene with " + prompt + ", in " + weather_prompt + " weather."
logging.info(f"{label_file_id}, rcs_class: {get_cs_classes()[c]}, weather: {weather_prompt}, gen_seed: {gen_seed}")
rescale_factor = args.multidiffusion_rescale_factor
# connected_components analysis
if args.multi_scale > 0:
# Large connected components
condition_comps_la, n_condition_comps = get_connected_components(
crop_condition_img,
comp_area_thre=args.comp_area_thre_la,
mode="large"
)
components_mask_la = condition_comps_la!=0
components_mask_la = components_mask_la.astype(int)
components_mask_la = torch.Tensor(components_mask_la)
# process cropped image label into one-hot encoding
crop_condition_img_onehot = torch.Tensor(make_one_hot(crop_condition_img))
crop_condition_img_onehot = torch.unsqueeze(crop_condition_img_onehot.permute(2, 0, 1), 0) #[1, class, H, W]
# initial generation
images_ini = pipe(
prompt,
num_inference_steps=args.num_inference_steps,
generator=generator,
num_images_per_prompt=args.num_generated_images,
cond_image=crop_condition_img_onehot,
output_type="both",
strength=1,
rescale_factor=1,
multi_diff_stride=64,
).images
image_ini = images_ini["image"][0]
image_ini_upsampl = image_ini.resize(
(args.resolution*rescale_factor, args.resolution*rescale_factor),
Image.LANCZOS)
image_ini_upsampl_latents = encode_latents(image_ini_upsampl, vae, generator)
# Multi-diffusion generation with large components impainting
images = pipe(
prompt,
num_inference_steps=args.num_inference_steps,
generator=generator,
num_images_per_prompt=args.num_generated_images,
cond_image=crop_condition_img_onehot,
output_type="pil",
strength=1,
rescale_factor=rescale_factor,
multi_diff_stride=args.multi_diff_stride,
add_inpaint=True,
ini_latents=image_ini_upsampl_latents,
init_img_mask_la=components_mask_la
).images
if images[0].size != (args.resolution, args.resolution):
images[0] = images[0].resize(
(args.resolution, args.resolution),
Image.LANCZOS)
# save generated image
output_file_img = f"{out_dir_img}/{label_file_id}_genid{gen_seed}.png"
output_file_label = f"{out_dir_label}/{label_file_id}_genid{gen_seed}_labelTrainIds.png"
output_file_grid = f"{out_dir_vis}/{label_file_id}_genid{gen_seed}.png"
images[0].save(output_file_img)
if not isinstance(crop_condition_img, Image.Image):
crop_condition_img = Image.fromarray(crop_condition_img)
crop_condition_img.save(output_file_label)
vis_grid = visualize_generated_image_grid(images[0], crop_condition_img, resolution=args.resolution)
vis_grid.save(output_file_grid)
if __name__ == "__main__":
args = parse_args()
main(args)