-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaze.py
308 lines (272 loc) · 9.88 KB
/
maze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from enum import Enum
from time import sleep
import pygame as pg
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
"""
0: Way
1: Block
2: Start
3: Target
4: Flag
"""
class Maze():
def __init__(self, maze, doDraw):
self.WIDTH = 500
self.maze = maze
self.HEIGHT = 550
self.doDraw = doDraw
if doDraw:
self.create_game()
self.color_Way = (255,255,255)
self.color_GR = (40,10,60)
color_Block = (255,0,0)
color_Start = (200,200,200)
self.color_Black = (0,0,0)
color_Flag = (0,160,90)
color_Target = (200,200,0)
self.dict_color = {0:self.color_Way, 1:color_Block, 2:color_Start, 3:color_Target, 4: color_Flag}
self.border_width = 1
self.cell_size = self.WIDTH/len(maze)
self.flags = {}
self.orderedFlags = []
for y in range(len(maze)):
for x in range(len(maze[y])):
if maze[y][x] == 2:
self.start_pos = [y, x]
elif maze[y][x] == 4:
self.flags[(y, x)] = False
self.orderedFlags += [(y,x)]
self.player = Player(self)
self.steps = 0
def create_game(self):
pg.init()
self.font = pg.font.Font('FreeSansBold.ttf', 32)
self.screen = pg.display.set_mode((self.WIDTH, self.HEIGHT))
pg.display.set_caption("MAZE RL")
def reset(self):
self.player.reset(self)
self.steps = 0
self.watched = {self.player.player_pos}
for x in self.flags.keys():
self.flags[x] = False
def capture_flag(self, y, x):
if self.maze[y][x] == 4 and self.flags[(y,x)] == False:
self.flags[(y,x)] = True
return True
return False
def draw(self):
self.screen.fill(self.color_Black)
for y in range(len(self.maze)):
for x in range(len(self.maze[y])):
pg.draw.rect(self.screen, self.color_GR, (x * self.cell_size, y * self.cell_size, self.cell_size, self.cell_size), self.border_width)
if self.maze[y][x] != 4 or self.flags[(y,x)] == False:
color = self.dict_color[self.maze[y][x]]
else:
color = self.dict_color[0]
pg.draw.rect(self.screen, color, (x * self.cell_size + self.border_width, y * self.cell_size + self.border_width, self.cell_size - 2 * self.border_width, self.cell_size - 2 * self.border_width))
self.player.draw(self)
self.text_render()
pg.display.update()
def text_render(self):
text = self.font.render("Steps: {}".format(self.steps), True, self.color_Way)
textRect = text.get_rect()
textRect.center = 100 , 520
self.screen.blit(text, textRect)
def check_visited(self, y, x):
flag = False
if (y,x) in self.watched:
flag = True
else:
self.watched.add((y,x))
return flag
def move(self, action):
y,x = self.player.move(action, True)
self.steps += 1
if self.check_visited(y, x):
return -10, False
if self.capture_flag(y,x):
return 50, False
if self.maze[y][x] == 3:
if False in self.flags.values():
return -400, True
return 100, True
return -1, False
def get_flags(self, only_count):
if only_count:
flags_count = 0
for value in self.flags.values():
if value:
flags_count += 1
return flags_count
return tuple([self.flags[(y, x)] for y, x in self.orderedFlags])
def check_cell_valid(self, y, x):
return not(y < 0 or x < 0 or y >= len(self.maze) or x >= len(self.maze[0]) or self.maze[y][x] == 1)
class Player():
def __init__(self, maze):
self.reset(maze)
self.color = (100,50,100)
self.radius = maze.cell_size * .4
def reset(self, maze):
self.player_pos = maze.start_pos[0], maze.start_pos[1]
def draw(self, maze):
y, x = (self.player_pos[0] + .5) * maze.cell_size, (self.player_pos[1] + .5) * maze.cell_size
pg.draw.circle(maze.screen, self.color, (x, y), self.radius)
def check_move_valid(self, maze, action):
y, x = self.move(action)
return maze.check_cell_valid(y, x)
def move(self, action, assign=False):
y, x = self.player_pos[0], self.player_pos[1]
if action == Action.Up:
y -= 1
elif action == Action.Down:
y += 1
elif action == Action.Right:
x += 1
else:
x -= 1
if assign:
self.player_pos = y, x
return y, x
class Action(Enum):
Up = 0
Right = 1
Down = 2
Left = 3
Default = 6
class RL():
def __init__(self, maze, times, gamma= .9, alpha= .1, epsilon= .1, only_count=False):
self.maze = maze
self.player = maze.player
self.actions = [Action.Up, Action.Right, Action.Down, Action.Left]
self.times = times
self.gamma = gamma
self.Qs = {}
self.alpha = alpha
self.epsilon = epsilon
self.only_count = only_count
def choose(self, state, playing= False):
possible_actions = self.get_possible_actions()
if not playing and random.random() < self.epsilon:
return random.choice(possible_actions)
Qs = [self.getQ(state, a) for a in possible_actions]
maxQ = max(Qs)
bigest = random.choice([a for i, a in enumerate(possible_actions) if Qs[i] == maxQ])
return bigest
def get_possible_actions(self):
return [action for action in self.actions if self.player.check_move_valid(maze, action)]
def getQ(self, state, action):
if (state, action) in self.Qs:
return self.Qs[(state, action)]
return 0
def updateQ(self, state, action, reward, next_state):
Q = self.getQ(state, action)
maxQnext = 0
possible_moves = self.get_possible_actions()
for a in possible_moves:
maxQnext = max(self.getQ(next_state, a), maxQnext)
if len(possible_moves):
Q = Q + self.alpha * (reward + self.gamma * maxQnext - Q)
else :
Q += reward
self.Qs[(state, action)] = Q
return Q
def get_state(self):
return self.player.player_pos[0], self.player.player_pos[1], self.maze.get_flags(self.only_count)
def start(self):
self.steps = np.zeros(self.times)
self.costs = np.zeros(self.times)
for episode in range(self.times):
step, cost = self.play(self.maze.doDraw)
print("Done {0}| Steps: {1} with Costs: {2}".format(episode, step, cost))
self.costs[episode] = cost
self.steps[episode] = self.maze.steps
print("The average of the last 5: ",np.average(self.steps[-5:]))
def print_Qs_Nan(self):
data = [(k[0], k[1].name, v) for k, v in rl.Qs.items()]
df = pd.DataFrame.from_records(data, columns=['State', 'Action', 'Value'])
df.set_index(['State', 'Action'], inplace=True)
df = df.unstack()
df.columns = df.columns.get_level_values(1)
df.reset_index(inplace=True)
df.index.name = None
pd.set_option('display.max_rows', df.shape[0])
return df
def print_Qs(self):
df = self.print_Qs_Nan()
df.fillna(0, inplace=True)
return df
def plt_steps(self):
plt.figure()
plt.plot(np.arange(len(self.steps)), self.steps, 'b')
plt.title('Episode via steps')
plt.xlabel('Episode')
plt.ylabel('Steps')
def plt_costs(self):
plt.figure()
plt.plot(np.arange(len(self.costs)), self.costs, 'b')
plt.title('Episode via costs')
plt.xlabel('Episode')
plt.ylabel('Costs')
def plt_costs_av_steps(self):
plt.figure()
plt.plot(np.arange(len(self.costs)), self.costs/self.steps, 'b')
plt.title('Episode via average costs over steps')
plt.xlabel('Episode')
plt.ylabel('average costs over steps')
def play(self, doDraw=True, playing=False):
cost = 0
self.maze.reset()
state = self.get_state()
if playing and doDraw:
self.maze.create_game()
sleep(5)
while self.maze.steps < 3000:
if doDraw and playing:
for event in pg.event.get():
if event.type == pg.QUIT:
return
maze.draw()
if playing:
sleep(.2)
action = self.choose(state, playing)
reward, target = maze.move(action)
next_state = self.get_state()
cost += self.updateQ(state, action, reward, next_state)
state = next_state
if target:
if doDraw:
maze.draw()
sleep(1)
if playing:
pg.quit()
return self.maze.steps, cost
if playing and doDraw:
pg.quit()
return self.play(doDraw, playing)
if __name__ == '__main__':
mazeM = [
[0, 0, 4, 0, 0, 0, 0, 0, 0, 2],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 1, 1, 1, 0, 1, 1, 1, 0],
[0, 4, 1, 4, 0, 0, 0, 0, 1, 0],
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
[1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 4, 0, 0, 0, 0],
[0, 0, 3, 1, 0, 0, 1, 1, 1, 1]]
maze = Maze(mazeM, True)
while True:
for event in pg.event.get():
if event.type == pg.QUIT:
break
maze.draw()
# doDraw = False
# maze = Maze(mazeM, doDraw)
# rl = RL(maze, 1000)
# rl.start()
# if doDraw:
# pg.quit()