-
Notifications
You must be signed in to change notification settings - Fork 805
/
encoder.py
135 lines (121 loc) · 5.8 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
from modules.commons.common_layers import *
from modules.commons.common_layers import Embedding
from modules.commons.common_layers import SinusoidalPositionalEmbedding
from utils.hparams import hparams
import numpy as np
import math
class LayerNorm(torch.nn.LayerNorm):
"""Layer normalization module.
:param int nout: output dim size
:param int dim: dimension to be normalized
"""
def __init__(self, nout, dim=-1):
"""Construct an LayerNorm object."""
super(LayerNorm, self).__init__(nout, eps=1e-12)
self.dim = dim
def forward(self, x):
"""Apply layer normalization.
:param torch.Tensor x: input tensor
:return: layer normalized tensor
:rtype torch.Tensor
"""
if self.dim == -1:
return super(LayerNorm, self).forward(x)
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)
class PitchPredictor(torch.nn.Module):
def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5,
dropout_rate=0.1, padding='SAME'):
super(PitchPredictor, self).__init__()
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.padding = padding
for idx in range(n_layers):
in_chans = idim if idx == 0 else n_chans
self.conv += [torch.nn.Sequential(
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
if padding == 'SAME'
else (kernel_size - 1, 0), 0),
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
torch.nn.ReLU(),
LayerNorm(n_chans, dim=1),
torch.nn.Dropout(dropout_rate)
)]
self.linear = torch.nn.Linear(n_chans, odim)
self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096)
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1]))
def forward(self, xs):
positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0])
xs = xs + positions
xs = xs.transpose(1, -1) # (B, idim, Tmax)
for f in self.conv:
xs = f(xs) # (B, C, Tmax)
xs = self.linear(xs.transpose(1, -1)) # (B, Tmax, H)
return xs
class SvcEncoder(nn.Module):
def __init__(self, dictionary, out_dims=None):
super().__init__()
# self.dictionary = dictionary
self.padding_idx = 0
self.hidden_size = hparams['hidden_size']
self.out_dims = out_dims
if out_dims is None:
self.out_dims = hparams['audio_num_mel_bins']
self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
if hparams['use_pitch_embed']:
self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx)
self.pitch_predictor = PitchPredictor(
self.hidden_size,
n_chans=predictor_hidden,
n_layers=hparams['predictor_layers'],
dropout_rate=hparams['predictor_dropout'],
odim=2 if hparams['pitch_type'] == 'frame' else 1,
padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])
if hparams['use_energy_embed']:
self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx)
if hparams['use_spk_id']:
self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size)
if hparams['use_split_spk_id']:
self.spk_embed_f0 = Embedding(hparams['num_spk'], self.hidden_size)
self.spk_embed_dur = Embedding(hparams['num_spk'], self.hidden_size)
elif hparams['use_spk_embed']:
self.spk_embed_proj = Linear(256, self.hidden_size, bias=True)
if hparams['pitch_norm'] == 'standard':
self.pitch_norm = True
else:
self.pitch_norm = False
self.f0_bin = hparams['f0_bin']
self.f0_max = hparams['f0_max']
self.f0_min = hparams['f0_min']
def forward(self, hubert, mel2ph=None, spk_embed=None, f0=None):
encoder_out = hubert
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, encoder_out.shape[-1]])
decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H]
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
rdecoder_inp, f0_denorm, pitch_pred = self.add_pitch(f0, mel2ph)
decoder_inp = decoder_inp + rdecoder_inp.cpu()
decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding
return decoder_inp.transpose(1, 2), f0_denorm
def add_pitch(self, f0, mel2ph):
pitch_padding = (mel2ph == 0)
f0_denorm = self.denorm_f0(f0, pitch_padding=pitch_padding)
f0[pitch_padding] = 0
pitch = self.f0_to_coarse(f0_denorm)
pitch_pred = pitch.unsqueeze(-1)
pitch_embedding = self.pitch_embed(pitch).cuda()
return pitch_embedding, f0_denorm, pitch_pred
def denorm_f0(self, f0, pitch_padding=None):
f0 = 2 ** f0
f0[pitch_padding] = 0
return f0
def f0_to_coarse(self, f0):
f0_mel_min = 1127 * math.log(1 + self.f0_min / 700)
f0_mel_max = 1127 * math.log(1 + self.f0_max / 700)
f0_mel = 1127 * (1 + f0 / 700).log()
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (self.f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
f0_coarse = (f0_mel + 0.5).long()
return f0_coarse