-
Notifications
You must be signed in to change notification settings - Fork 716
/
fuzzy_completer.py
213 lines (169 loc) · 7.56 KB
/
fuzzy_completer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from __future__ import annotations
import re
from typing import Callable, Iterable, NamedTuple, Sequence
from prompt_toolkit.document import Document
from prompt_toolkit.filters import FilterOrBool, to_filter
from prompt_toolkit.formatted_text import AnyFormattedText, StyleAndTextTuples
from .base import CompleteEvent, Completer, Completion
from .word_completer import WordCompleter
__all__ = [
"FuzzyCompleter",
"FuzzyWordCompleter",
]
class FuzzyCompleter(Completer):
"""
Fuzzy completion.
This wraps any other completer and turns it into a fuzzy completer.
If the list of words is: ["leopard" , "gorilla", "dinosaur", "cat", "bee"]
Then trying to complete "oar" would yield "leopard" and "dinosaur", but not
the others, because they match the regular expression 'o.*a.*r'.
Similar, in another application "djm" could expand to "django_migrations".
The results are sorted by relevance, which is defined as the start position
and the length of the match.
Notice that this is not really a tool to work around spelling mistakes,
like what would be possible with difflib. The purpose is rather to have a
quicker or more intuitive way to filter the given completions, especially
when many completions have a common prefix.
Fuzzy algorithm is based on this post:
https://blog.amjith.com/fuzzyfinder-in-10-lines-of-python
:param completer: A :class:`~.Completer` instance.
:param WORD: When True, use WORD characters.
:param pattern: Regex pattern which selects the characters before the
cursor that are considered for the fuzzy matching.
:param enable_fuzzy: (bool or `Filter`) Enabled the fuzzy behavior. For
easily turning fuzzyness on or off according to a certain condition.
"""
def __init__(
self,
completer: Completer,
WORD: bool = False,
pattern: str | None = None,
enable_fuzzy: FilterOrBool = True,
) -> None:
assert pattern is None or pattern.startswith("^")
self.completer = completer
self.pattern = pattern
self.WORD = WORD
self.pattern = pattern
self.enable_fuzzy = to_filter(enable_fuzzy)
def get_completions(
self, document: Document, complete_event: CompleteEvent
) -> Iterable[Completion]:
if self.enable_fuzzy():
return self._get_fuzzy_completions(document, complete_event)
else:
return self.completer.get_completions(document, complete_event)
def _get_pattern(self) -> str:
if self.pattern:
return self.pattern
if self.WORD:
return r"[^\s]+"
return "^[a-zA-Z0-9_]*"
def _get_fuzzy_completions(
self, document: Document, complete_event: CompleteEvent
) -> Iterable[Completion]:
word_before_cursor = document.get_word_before_cursor(
pattern=re.compile(self._get_pattern())
)
# Get completions
document2 = Document(
text=document.text[: document.cursor_position - len(word_before_cursor)],
cursor_position=document.cursor_position - len(word_before_cursor),
)
inner_completions = list(
self.completer.get_completions(document2, complete_event)
)
fuzzy_matches: list[_FuzzyMatch] = []
if word_before_cursor == "":
# If word before the cursor is an empty string, consider all
# completions, without filtering everything with an empty regex
# pattern.
fuzzy_matches = [_FuzzyMatch(0, 0, compl) for compl in inner_completions]
else:
pat = ".*?".join(map(re.escape, word_before_cursor))
pat = f"(?=({pat}))" # lookahead regex to manage overlapping matches
regex = re.compile(pat, re.IGNORECASE)
for compl in inner_completions:
matches = list(regex.finditer(compl.text))
if matches:
# Prefer the match, closest to the left, then shortest.
best = min(matches, key=lambda m: (m.start(), len(m.group(1))))
fuzzy_matches.append(
_FuzzyMatch(len(best.group(1)), best.start(), compl)
)
def sort_key(fuzzy_match: _FuzzyMatch) -> tuple[int, int]:
"Sort by start position, then by the length of the match."
return fuzzy_match.start_pos, fuzzy_match.match_length
fuzzy_matches = sorted(fuzzy_matches, key=sort_key)
for match in fuzzy_matches:
# Include these completions, but set the correct `display`
# attribute and `start_position`.
yield Completion(
text=match.completion.text,
start_position=match.completion.start_position
- len(word_before_cursor),
# We access to private `_display_meta` attribute, because that one is lazy.
display_meta=match.completion._display_meta,
display=self._get_display(match, word_before_cursor),
style=match.completion.style,
)
def _get_display(
self, fuzzy_match: _FuzzyMatch, word_before_cursor: str
) -> AnyFormattedText:
"""
Generate formatted text for the display label.
"""
def get_display() -> AnyFormattedText:
m = fuzzy_match
word = m.completion.text
if m.match_length == 0:
# No highlighting when we have zero length matches (no input text).
# In this case, use the original display text (which can include
# additional styling or characters).
return m.completion.display
result: StyleAndTextTuples = []
# Text before match.
result.append(("class:fuzzymatch.outside", word[: m.start_pos]))
# The match itself.
characters = list(word_before_cursor)
for c in word[m.start_pos : m.start_pos + m.match_length]:
classname = "class:fuzzymatch.inside"
if characters and c.lower() == characters[0].lower():
classname += ".character"
del characters[0]
result.append((classname, c))
# Text after match.
result.append(
("class:fuzzymatch.outside", word[m.start_pos + m.match_length :])
)
return result
return get_display()
class FuzzyWordCompleter(Completer):
"""
Fuzzy completion on a list of words.
(This is basically a `WordCompleter` wrapped in a `FuzzyCompleter`.)
:param words: List of words or callable that returns a list of words.
:param meta_dict: Optional dict mapping words to their meta-information.
:param WORD: When True, use WORD characters.
"""
def __init__(
self,
words: Sequence[str] | Callable[[], Sequence[str]],
meta_dict: dict[str, str] | None = None,
WORD: bool = False,
) -> None:
self.words = words
self.meta_dict = meta_dict or {}
self.WORD = WORD
self.word_completer = WordCompleter(
words=self.words, WORD=self.WORD, meta_dict=self.meta_dict
)
self.fuzzy_completer = FuzzyCompleter(self.word_completer, WORD=self.WORD)
def get_completions(
self, document: Document, complete_event: CompleteEvent
) -> Iterable[Completion]:
return self.fuzzy_completer.get_completions(document, complete_event)
class _FuzzyMatch(NamedTuple):
match_length: int
start_pos: int
completion: Completion