Skip to content

Commit 8cac140

Browse files
authored
Merge pull request #5738 from limzykenneth/fix-applymatrix-example
Fix applyMatrix example missing from reference page
2 parents 2ef0cef + 10bb489 commit 8cac140

File tree

1 file changed

+30
-30
lines changed

1 file changed

+30
-30
lines changed

src/core/transform.js

Lines changed: 30 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -30,36 +30,6 @@ import p5 from './main';
3030
* @method applyMatrix
3131
* @param {Array} arr an array of numbers - should be 6 or 16 length (2*3 or 4*4 matrix values)
3232
* @chainable
33-
*/
34-
/**
35-
* @method applyMatrix
36-
* @param {Number} a numbers which define the 2×3 or 4x4 matrix to be multiplied
37-
* @param {Number} b numbers which define the 2×3 or 4x4 matrix to be multiplied
38-
* @param {Number} c numbers which define the 2×3 or 4x4 matrix to be multiplied
39-
* @param {Number} d numbers which define the 2×3 or 4x4 matrix to be multiplied
40-
* @param {Number} e numbers which define the 2×3 or 4x4 matrix to be multiplied
41-
* @param {Number} f numbers which define the 2×3 or 4x4 matrix to be multiplied
42-
* @chainable
43-
*/
44-
/**
45-
* @method applyMatrix
46-
* @param {Number} a
47-
* @param {Number} b
48-
* @param {Number} c
49-
* @param {Number} d
50-
* @param {Number} e
51-
* @param {Number} f
52-
* @param {Number} g numbers which define the 4x4 matrix to be multiplied
53-
* @param {Number} h numbers which define the 4x4 matrix to be multiplied
54-
* @param {Number} i numbers which define the 4x4 matrix to be multiplied
55-
* @param {Number} j numbers which define the 4x4 matrix to be multiplied
56-
* @param {Number} k numbers which define the 4x4 matrix to be multiplied
57-
* @param {Number} l numbers which define the 4x4 matrix to be multiplied
58-
* @param {Number} m numbers which define the 4x4 matrix to be multiplied
59-
* @param {Number} n numbers which define the 4x4 matrix to be multiplied
60-
* @param {Number} o numbers which define the 4x4 matrix to be multiplied
61-
* @param {Number} p numbers which define the 4x4 matrix to be multiplied
62-
* @chainable
6333
* @example
6434
* <div>
6535
* <code>
@@ -183,6 +153,36 @@ import p5 from './main';
183153
* A rectangle shearing
184154
* A rectangle in the upper left corner
185155
*/
156+
/**
157+
* @method applyMatrix
158+
* @param {Number} a numbers which define the 2×3 or 4x4 matrix to be multiplied
159+
* @param {Number} b numbers which define the 2×3 or 4x4 matrix to be multiplied
160+
* @param {Number} c numbers which define the 2×3 or 4x4 matrix to be multiplied
161+
* @param {Number} d numbers which define the 2×3 or 4x4 matrix to be multiplied
162+
* @param {Number} e numbers which define the 2×3 or 4x4 matrix to be multiplied
163+
* @param {Number} f numbers which define the 2×3 or 4x4 matrix to be multiplied
164+
* @chainable
165+
*/
166+
/**
167+
* @method applyMatrix
168+
* @param {Number} a
169+
* @param {Number} b
170+
* @param {Number} c
171+
* @param {Number} d
172+
* @param {Number} e
173+
* @param {Number} f
174+
* @param {Number} g numbers which define the 4x4 matrix to be multiplied
175+
* @param {Number} h numbers which define the 4x4 matrix to be multiplied
176+
* @param {Number} i numbers which define the 4x4 matrix to be multiplied
177+
* @param {Number} j numbers which define the 4x4 matrix to be multiplied
178+
* @param {Number} k numbers which define the 4x4 matrix to be multiplied
179+
* @param {Number} l numbers which define the 4x4 matrix to be multiplied
180+
* @param {Number} m numbers which define the 4x4 matrix to be multiplied
181+
* @param {Number} n numbers which define the 4x4 matrix to be multiplied
182+
* @param {Number} o numbers which define the 4x4 matrix to be multiplied
183+
* @param {Number} p numbers which define the 4x4 matrix to be multiplied
184+
* @chainable
185+
*/
186186
p5.prototype.applyMatrix = function() {
187187
let isTypedArray = arguments[0] instanceof Object.getPrototypeOf(Uint8Array);
188188
if (Array.isArray(arguments[0]) || isTypedArray) {

0 commit comments

Comments
 (0)