-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdistributions.py
622 lines (499 loc) · 21.8 KB
/
distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
# Copyright 2020 MIT Probabilistic Computing Project.
# See LICENSE.txt
import scipy.stats
import sympy
# ==============================================================================
# ContinuousReal
from .spn import ContinuousReal
from .sym_util import Reals
from .sym_util import RealsNeg
from .sym_util import RealsPos
from .sym_util import UnitInterval
def Alpha(**kwargs):
"""An alpha continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.alpha(**kwargs),
RealsPos)
def Anglit(**kwargs):
"""An anglit continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.anglit(**kwargs),
sympy.Interval(-sympy.pi/4, sympy.pi/4))
def Arcsine(**kwargs):
"""An arcsine continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.arcsine(**kwargs),
UnitInterval)
def Argus(**kwargs):
"""Argus distribution"""
return lambda symbol: ContinuousReal(symbol, scipy.stats.argus(**kwargs),
UnitInterval)
def Beta(**kwargs):
"""A beta continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.beta(**kwargs),
UnitInterval)
def Betaprime(**kwargs):
"""A beta prime continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.betaprime(**kwargs),
RealsPos)
def Bradford(**kwargs):
"""A Bradford continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.bradford(**kwargs),
UnitInterval)
def Burr(**kwargs):
"""A Burr (Type III) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.burr(**kwargs),
RealsPos)
def Burr12(**kwargs):
"""A Burr (Type XII) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.burr12(**kwargs),
RealsPos)
def Cauchy(**kwargs):
"""A Cauchy continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.cauchy(**kwargs),
sympy.Reals)
def Chi(**kwargs):
"""A chi continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.chi(**kwargs),
RealsPos)
def Chi2(**kwargs):
"""A chi-squared continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.chi2(**kwargs),
RealsPos)
def Cosine(**kwargs):
"""A cosine continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.cosine(**kwargs),
sympy.Interval(-sympy.pi/2, sympy.pi/2))
def Crystalball(**kwargs):
"""Crystalball distribution."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.crystalball(**kwargs),
sympy.Reals)
def Dgamma(**kwargs):
"""A double gamma continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.dgamma(**kwargs),
sympy.Reals)
def Dweibull(**kwargs):
"""A double Weibull continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.dweibull(**kwargs),
sympy.Reals)
def Erlang(**kwargs):
"""An Erlang continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.erlang(**kwargs),
RealsPos)
def Expon(**kwargs):
"""An exponential continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.expon(**kwargs),
RealsPos)
def Exponnorm(**kwargs):
"""An exponentially modified Normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.exponnorm(**kwargs),
sympy.Reals)
def Exponweib(**kwargs):
"""An exponentiated Weibull continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.exponweib(**kwargs),
RealsPos)
def Exponpow(**kwargs):
"""An exponential power continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.exponpow(**kwargs),
RealsPos)
def F(**kwargs):
"""An F continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.f(**kwargs),
RealsPos)
def Fatiguelife(**kwargs):
"""A fatigue-life (Birnbaum-Saunders) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.fatiguelife(**kwargs),
RealsPos)
def Fisk(**kwargs):
"""A Fisk continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.fisk(**kwargs),
RealsPos)
def Foldcauchy(**kwargs):
"""A folded Cauchy continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.foldcauchy(**kwargs),
RealsPos)
def Foldnorm(**kwargs):
"""A folded normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.foldnorm(**kwargs),
RealsPos)
def Frechet_r(**kwargs):
"""A Frechet right (or Weibull minimum) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.frechet_r(**kwargs),
RealsPos)
def Frechet_l(**kwargs):
"""A Frechet left (or Weibull maximum) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.frechet_l(**kwargs),
sympy.RealsNeg)
def Genlogistic(**kwargs):
"""A generalized logistic continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.genlogistic(**kwargs),
RealsPos)
def Gennorm(**kwargs):
"""A generalized normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.gennorm(**kwargs),
sympy.Reals)
def Genpareto(**kwargs):
"""A generalized Pareto continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.genpareto(**kwargs),
RealsPos)
def Genexpon(**kwargs):
"""A generalized exponential continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.genexpon(**kwargs),
RealsPos)
def Genextreme(**kwargs):
"""A generalized extreme value continuous random variable."""
c = kwargs['c']
if c == 0:
domain = Reals
elif c > 0:
domain = sympy.Interval(-sympy.oo, 1/c)
elif c < 0:
domain = sympy.Interval(1/c, sympy.oo)
else:
assert False, 'Bad argument "c" for genextreme: %s' % (kwargs,)
return lambda symbol: ContinuousReal(symbol, scipy.stats.genextreme(**kwargs),
domain)
def Gausshyper(**kwargs):
"""A Gauss hypergeometric continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.gausshyper(**kwargs),
UnitInterval)
def Gamma(**kwargs):
"""A gamma continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.gamma(**kwargs),
RealsPos)
def Gengamma(**kwargs):
"""A generalized gamma continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.gengamma(**kwargs),
RealsPos)
def Genhalflogistic(**kwargs):
"""A generalized half-logistic continuous random variable."""
assert kwargs['c'] > 0
return lambda symbol: ContinuousReal(symbol, scipy.stats.genhalflogistic(**kwargs),
sympy.Interval(0, 1./kwargs['c']))
def Geninvgauss(**kwargs):
"""A Generalized Inverse Gaussian continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.geninvgauss(**kwargs),
RealsPos)
def Gilbrat(**kwargs):
"""A Gilbrat continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.gilbrat(**kwargs),
RealsPos)
def Gompertz(**kwargs):
"""A Gompertz (or truncated Gumbel) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.gompertz(**kwargs),
RealsPos)
def Gumbel_r(**kwargs):
"""A right-skewed Gumbel continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.gumbel_r(**kwargs),
sympy.Reals)
def Gumbel_l(**kwargs):
"""A left-skewed Gumbel continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.gumbel_l(**kwargs),
RealsPos)
def Halfcauchy(**kwargs):
"""A Half-Cauchy continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.halfcauchy(**kwargs),
RealsPos)
def Halflogistic(**kwargs):
"""A half-logistic continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.halflogistic(**kwargs),
RealsPos)
def Halfnorm(**kwargs):
"""A half-normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.halfnorm(**kwargs),
RealsPos)
def Halfgennorm(**kwargs):
"""The upper half of a generalized normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.halfgennorm(**kwargs),
RealsPos)
def Hypsecant(**kwargs):
"""A hyperbolic secant continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.hypsecant(**kwargs),
sympy.Reals)
def Invgamma(**kwargs):
"""An inverted gamma continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.invgamma(**kwargs),
RealsPos)
def Invgauss(**kwargs):
"""An inverse Gaussian continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.invgauss(**kwargs),
RealsPos)
def Invweibull(**kwargs):
"""An inverted Weibull continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.invweibull(**kwargs),
RealsPos)
def Johnsonsb(**kwargs):
"""A Johnson SB continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.johnsonsb(**kwargs),
UnitInterval)
def Johnsonsu(**kwargs):
"""A Johnson SU continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.johnsonsu(**kwargs),
Reals)
def Kappa4(**kwargs):
"""Kappa 4 parameter distribution."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.kappa4(**kwargs),
Reals)
def Kappa3(**kwargs):
"""Kappa 3 parameter distribution."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.kappa3(**kwargs),
RealsPos)
def Ksone(**kwargs):
"""General Kolmogorov-Smirnov one-sided test."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.ksone(**kwargs),
UnitInterval)
def Kstwobign(**kwargs):
"""Kolmogorov-Smirnov two-sided test for large N."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.kstwobign(**kwargs),
sympy.Interval(0, sympy.sqrt(kwargs['n'])))
def Laplace(**kwargs):
"""A Laplace continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.laplace(**kwargs),
Reals)
def Levy(**kwargs):
"""A Levy continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.levy(**kwargs),
RealsPos)
def Levy_l(**kwargs):
"""A left-skewed Levy continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.levy_l(**kwargs),
RealsNeg)
def Levy_stable(**kwargs):
"""A Levy-stable continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.levy_stable(**kwargs),
Reals)
def Logistic(**kwargs):
"""A logistic (or Sech-squared) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.logistic(**kwargs),
Reals)
def Loggamma(**kwargs):
"""A log gamma continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.loggamma(**kwargs),
RealsNeg)
def Loglaplace(**kwargs):
"""A log-Laplace continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.loglaplace(**kwargs),
RealsPos)
def Lognorm(**kwargs):
"""A lognormal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.lognorm(**kwargs),
RealsPos)
def Loguniform(**kwargs):
"""A loguniform or reciprocal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.loguniform(**kwargs),
sympy.Interval(kwargs['a'], kwargs['b']))
def Lomax(**kwargs):
"""A Lomax (Pareto of the second kind) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.lomax(**kwargs),
RealsPos)
def Maxwell(**kwargs):
"""A Maxwell continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.maxwell(**kwargs),
RealsPos)
def Mielke(**kwargs):
"""A Mielke Beta-Kappa / Dagum continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.mielke(**kwargs),
RealsPos)
def Moyal(**kwargs):
"""A Moyal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.moyal(**kwargs),
Reals)
def Nakagami(**kwargs):
"""A Nakagami continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.nakagami(**kwargs),
RealsPos)
def Ncx2(**kwargs):
"""A non-central chi-squared continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.ncx2(**kwargs),
RealsPos)
def Ncf(**kwargs):
"""A non-central F distribution continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.ncf(**kwargs),
RealsPos)
def Nct(**kwargs):
"""A non-central Student’s t continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.nct(**kwargs),
Reals)
def Norm(**kwargs):
"""A normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.norm(**kwargs),
Reals)
def Norminvgauss(**kwargs):
"""A Normal Inverse Gaussian continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.norminvgauss(**kwargs),
Reals)
def Pareto(**kwargs):
"""A Pareto continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.pareto(**kwargs),
sympy.Interval(1, sympy.oo))
def Pearson3(**kwargs):
"""A pearson type III continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.pearson3(**kwargs),
Reals)
def Powerlaw(**kwargs):
"""A power-function continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.powerlaw(**kwargs),
UnitInterval)
def Powerlognorm(**kwargs):
"""A power log-normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.powerlognorm(**kwargs),
RealsPos)
def Powernorm(**kwargs):
"""A power normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.powernorm(**kwargs),
RealsPos)
def Rdist(**kwargs):
"""An R-distributed (symmetric beta) continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.rdist(**kwargs),
sympy.Interval(-1, 1))
def Rayleigh(**kwargs):
"""A Rayleigh continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.rayleigh(**kwargs),
RealsPos)
def Rice(**kwargs):
"""A Rice continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.rice(**kwargs),
RealsPos)
def Recipinvgauss(**kwargs):
"""A reciprocal inverse Gaussian continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.recipinvgauss(**kwargs),
RealsPos)
def Semicircular(**kwargs):
"""A semicircular continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.semicircular(**kwargs),
sympy.Interval(-1, 1))
def Skewnorm(**kwargs):
"""A skew-normal random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.skewnorm(**kwargs),
Reals)
def T(**kwargs):
"""A Student’s t continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.t(**kwargs),
Reals)
def Trapz(**kwargs):
"""A trapezoidal continuous random variable."""
loc = kwargs.get('loc', 0)
scale = kwargs.get('scale', 1)
return lambda symbol: ContinuousReal(symbol, scipy.stats.trapz(**kwargs),
sympy.Interval(loc, loc+scale))
def Triang(**kwargs):
"""A triangular continuous random variable."""
loc = kwargs.get('loc', 0)
scale = kwargs.get('scale', 1)
return lambda symbol: ContinuousReal(symbol, scipy.stats.triang(**kwargs),
sympy.Interval(loc, loc+scale))
def Truncexpon(**kwargs):
"""A truncated exponential continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.truncexpon(**kwargs),
sympy.Interval(0, kwargs['b']))
def Truncnorm(**kwargs):
"""A truncated normal continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.truncnorm(**kwargs),
sympy.Interval(kwargs['a'], kwargs['b']))
def Tukeylambda(**kwargs):
"""A Tukey-Lamdba continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.tukeylambda(**kwargs),
RealsPos)
def Uniform(**kwargs):
"""A uniform continuous random variable."""
loc = kwargs.get('loc', 0)
scale = kwargs.get('scale', 1)
return lambda symbol: ContinuousReal(symbol, scipy.stats.uniform(**kwargs),
sympy.Interval(loc, loc + scale))
def Vonmises(**kwargs):
"""A Von Mises continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.vonmises(**kwargs),
sympy.Interval(-sympy.pi, sympy.pi))
def Vonmises_line(**kwargs):
"""A Von Mises continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.vonmises_line(**kwargs),
sympy.Interval(-sympy.pi, sympy.pi))
def Wald(**kwargs):
"""A Wald continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.wald(**kwargs),
RealsPos)
def Weibull_min(**kwargs):
"""Weibull minimum continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.weibull_min(**kwargs),
RealsPos)
def Weibull_max(**kwargs):
"""Weibull maximum continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.weibull_max(**kwargs),
RealsNeg)
def Wrapcauchy(**kwargs):
"""A wrapped Cauchy continuous random variable."""
return lambda symbol: ContinuousReal(symbol, scipy.stats.wrapcauchy(**kwargs),
sympy.Interval(0, 2*sympy.pi))
# ==============================================================================
# DiscreteReal
from .spn import DiscreteReal
from .sym_util import Integers
from .sym_util import IntegersPos
from .sym_util import IntegersPos0
def Bernoulli(**kwargs):
"""A Bernoulli discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.bernoulli(**kwargs),
sympy.Range(0, 2))
def Betabinom(**kwargs):
"""A beta-binomial discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.betabinom(**kwargs),
sympy.Range(0, kwargs['n']+1))
def Binom(**kwargs):
"""A binomial discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.binom(**kwargs),
sympy.Range(0, kwargs['n']+1))
def Boltzmann(**kwargs):
"""A Boltzmann (Truncated Discrete Exponential) random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.boltzmann(**kwargs),
sympy.Range(0, kwargs['N']+1))
def Dlaplace(**kwargs):
"""A Laplacian discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.dlaplace(**kwargs),
Integers)
def Geom(**kwargs):
"""A geometric discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.geom(**kwargs),
Integers)
def Hypergeom(**kwargs):
"""A hypergeometric discrete random variable."""
low = max(0, kwargs['N'], kwargs['N']-kwargs['M']+kwargs['n'])
high = min(kwargs['n'], kwargs['N'])
return lambda symbol: DiscreteReal(symbol, scipy.stats.hypergeom(**kwargs),
sympy.Range(low, high+1))
def Logser(**kwargs):
"""A Logarithmic (Log-Series, Series) discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.logser(**kwargs),
IntegersPos)
def Nbinom(**kwargs):
"""A negative binomial discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.nbinom(**kwargs),
IntegersPos0)
def Planck(**kwargs):
"""A Planck discrete exponential random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.planck(**kwargs),
IntegersPos0)
def Poisson(**kwargs):
"""A Poisson discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.poisson(**kwargs),
IntegersPos0)
def Randint(**kwargs):
"""A uniform discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.randint(**kwargs),
sympy.Range(kwargs['low'], kwargs['high']))
def Skellam(**kwargs):
"""A Skellam discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.skellam(**kwargs),
Integers)
def Zipf(**kwargs):
"""A Zipf discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.zipf(**kwargs),
IntegersPos)
def Yulesimon(**kwargs):
"""A Yule-Simon discrete random variable."""
return lambda symbol: DiscreteReal(symbol, scipy.stats.yulesimon(**kwargs),
IntegersPos)
def Atomic(**kwargs):
"""A Yule-Simon discrete random variable."""
return Randint(low=kwargs['loc'], high=kwargs['loc']+1)
# ==============================================================================
# Nominal
from .spn import NominalDistribution
def NominalDist(probs):
return lambda symbol: NominalDistribution(symbol, probs)