Skip to content

A multi label classification for identifying the most probabilistic companies a problem might be asked upon in its interview. It includes several approaches like label transformation, algorithm adaption, ensemble learning and LSTM. Base classifiers like Gaussian NB, Multinomial NB, Logistic Regression, Descision Tree, Random Forest and SVC is us…

Notifications You must be signed in to change notification settings

pro-grepper-org/multi-label-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Pro Grepper

TOC

  • Preprocessing
  • Training and Testing
  • Binary Relevance
    • Classifier: GaussianNB
    • Classifier: MultinomialNB
    • Classifier: SVC
    • Classifier: Logistic regression
    • Classifier: Random Forest
    • Classifier: Decision Tree
  • Classifier Chain
    • Classifier: GaussianNB
    • Classifier: MultinomialNB
    • Classifier: SVC
    • Classifier: Logistic Regression
    • Classifier: Random Forest
    • Classifier: Decision Tree
  • Label Powerset
    • Classifier: GaussianNB
    • Classifier: MultinomialNB
    • Classifier: SVC
    • Classifier: Logisitic Regression
    • Classifier: Random Forest
    • Classifier: Decision Tree
  • Adaptive approach: MLKNN
  • Ensemble Learning
  • LSTM

About

A multi label classification for identifying the most probabilistic companies a problem might be asked upon in its interview. It includes several approaches like label transformation, algorithm adaption, ensemble learning and LSTM. Base classifiers like Gaussian NB, Multinomial NB, Logistic Regression, Descision Tree, Random Forest and SVC is us…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published