- Preprocessing
- Training and Testing
- Binary Relevance
- Classifier: GaussianNB
- Classifier: MultinomialNB
- Classifier: SVC
- Classifier: Logistic regression
- Classifier: Random Forest
- Classifier: Decision Tree
- Classifier Chain
- Classifier: GaussianNB
- Classifier: MultinomialNB
- Classifier: SVC
- Classifier: Logistic Regression
- Classifier: Random Forest
- Classifier: Decision Tree
- Label Powerset
- Classifier: GaussianNB
- Classifier: MultinomialNB
- Classifier: SVC
- Classifier: Logisitic Regression
- Classifier: Random Forest
- Classifier: Decision Tree
- Adaptive approach: MLKNN
- Ensemble Learning
- LSTM
-
Notifications
You must be signed in to change notification settings - Fork 2
A multi label classification for identifying the most probabilistic companies a problem might be asked upon in its interview. It includes several approaches like label transformation, algorithm adaption, ensemble learning and LSTM. Base classifiers like Gaussian NB, Multinomial NB, Logistic Regression, Descision Tree, Random Forest and SVC is us…
pro-grepper-org/multi-label-classification
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
A multi label classification for identifying the most probabilistic companies a problem might be asked upon in its interview. It includes several approaches like label transformation, algorithm adaption, ensemble learning and LSTM. Base classifiers like Gaussian NB, Multinomial NB, Logistic Regression, Descision Tree, Random Forest and SVC is us…
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published