-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathissuer_test.go
348 lines (304 loc) · 9.38 KB
/
issuer_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
package btd
import (
"bytes"
stdcrypto "crypto"
"crypto/elliptic"
crand "crypto/rand"
"encoding/json"
"errors"
"testing"
"github.com/privacypass/challenge-bypass-server/crypto"
)
var (
testHost = []byte("example.com")
testPath = []byte("/index.html")
)
// Generates a small but well-formed ISSUE request for testing.
func makeTokenIssueRequest(h2cObj crypto.H2CObject) (*BlindTokenRequest, [][]byte, []*crypto.Point, [][]byte, error) {
tokens := make([][]byte, 10)
bF := make([][]byte, len(tokens))
bP := make([]*crypto.Point, len(tokens))
for i := 0; i < len(tokens); i++ {
token, bPoint, bFactor, err := crypto.CreateBlindToken(h2cObj)
if err != nil {
return nil, nil, nil, nil, err
}
tokens[i] = token
bP[i] = bPoint
bF[i] = bFactor
}
marshaledTokenList, err := crypto.BatchMarshalPoints(bP)
if err != nil {
return nil, nil, nil, nil, err
}
request := &BlindTokenRequest{
Type: "Issue",
Contents: marshaledTokenList, // this is [][]byte, not JSON
}
return request, tokens, bP, bF, nil
}
func makeTokenRedempRequest(x []byte, G, H *crypto.Point, h2cObj crypto.H2CObject) (*BlindTokenRequest, error) {
// Client
request, tokens, bP, bF, err := makeTokenIssueRequest(h2cObj)
if err != nil {
return nil, err
}
// Client -> (request) -> Server
// Server
// Sign the blind points (x is the signing key)
marshaledData, err := ApproveTokens(*request, x, "1.1", G, H)
if err != nil {
return nil, err
}
// Client <- (signed blind tokens) <- Server
// Client
// a. Umarshal signed+blinded points
// XXX: hardcoded curve assumption
marshaledPoints, marshaledBP := marshaledData.Sigs, marshaledData.Proof
xbP, err := crypto.BatchUnmarshalPoints(h2cObj.Curve(), marshaledPoints)
if err != nil {
return nil, err
}
// b. Unmarshal and verify batch proof
// We need to re-sign all the tokens and re-compute
dleq, err := crypto.UnmarshalBatchProof(h2cObj.Curve(), marshaledBP)
if err != nil {
return nil, err
}
dleq.G = G
dleq.H = H
Q := signTokens(bP, x)
dleq.M, dleq.Z, err = recomputeComposites(G, H, bP, Q, h2cObj.Hash(), h2cObj.Curve())
if err != nil {
return nil, err
}
if !dleq.Verify() {
return nil, errors.New("Batch proof failed to verify")
}
// c. Unblind a point
xT := crypto.UnblindPoint(xbP[0], bF[0])
// d. Derive MAC key
sk := crypto.DeriveKey(h2cObj.Hash(), xT, tokens[0])
// e. MAC the request binding data
reqData := [][]byte{testHost, testPath}
reqBinder := crypto.CreateRequestBinding(h2cObj.Hash(), sk, reqData)
contents := [][]byte{tokens[0], reqBinder}
var h2cParamsBytes []byte
if h2cObj.Method() == "swu" {
curveParams := &crypto.CurveParams{Curve: "p256", Hash: "sha256", Method: "swu"}
h2cParamsBytes, err = json.Marshal(curveParams)
if err != nil {
return nil, err
}
contents = append(contents, h2cParamsBytes)
}
redeemRequest := &BlindTokenRequest{
Type: "Redeem",
Contents: contents,
}
return redeemRequest, nil
}
// Recompute composite values for DLEQ proof
func recomputeComposites(G, Y *crypto.Point, P, Q []*crypto.Point, hash stdcrypto.Hash, curve elliptic.Curve) (*crypto.Point, *crypto.Point, error) {
compositeM, compositeZ, _, err := crypto.ComputeComposites(hash, curve, G, Y, P, Q)
return compositeM, compositeZ, err
}
// Sign tokens for verifying DLEQ proof
func signTokens(P []*crypto.Point, key []byte) []*crypto.Point {
Q := make([]*crypto.Point, len(P))
for i := 0; i < len(Q); i++ {
Q[i] = crypto.SignPoint(P[i], key)
}
return Q
}
// This function exists only for testing. The wrapper is a transport format
// induced by internal systems. It should be irrelevant to third-party
// implementations.
func wrapTokenRequest(req *BlindTokenRequest) *BlindTokenRequestWrapper {
encoded, _ := MarshalRequest(req)
wrappedRequest := &BlindTokenRequestWrapper{
Request: encoded,
}
return wrappedRequest
}
func fakeWrappedRequest(h2cObj crypto.H2CObject) ([]byte, error) {
req, _, _, _, err := makeTokenIssueRequest(h2cObj)
if err != nil {
return nil, err
}
wrapped := wrapTokenRequest(req)
return MarshalRequest(wrapped)
}
func fakeIssueRequest(h2cObj crypto.H2CObject) ([]byte, []*crypto.Point, error) {
req, _, P, _, err := makeTokenIssueRequest(h2cObj)
if err != nil {
return nil, nil, err
}
m, err := MarshalRequest(req)
if err != nil {
return nil, nil, err
}
return m, P, nil
}
// Fakes the sampling of a signing key
func fakeSigningKey(h2cObj crypto.H2CObject) ([]byte, error) {
k, _, _, err := elliptic.GenerateKey(h2cObj.Curve(), crand.Reader)
if err != nil {
return nil, err
}
return k, nil
}
// Fakes the procedure of producing commitments for a signing key
func fakeCommitments(key []byte, h2cObj crypto.H2CObject) (*crypto.Point, *crypto.Point, error) {
_, Gx, Gy, err := elliptic.GenerateKey(h2cObj.Curve(), crand.Reader)
if err != nil {
return nil, nil, err
}
curve := h2cObj.Curve()
G := &crypto.Point{Curve: curve, X: Gx, Y: Gy}
Hx, Hy := curve.ScalarMult(Gx, Gy, key)
H := &crypto.Point{Curve: curve, X: Hx, Y: Hy}
return G, H, nil
}
// Combines the above two methods
func fakeKeyAndCommitments(h2cObj crypto.H2CObject) ([]byte, *crypto.Point, *crypto.Point, error) {
x, err := fakeSigningKey(h2cObj)
if err != nil {
return nil, nil, nil, err
}
G, H, err := fakeCommitments(x, h2cObj)
if err != nil {
return nil, nil, nil, err
}
return x, G, H, nil
}
// Tests that wrapped requests can be parsed for all curve choices
func TestParseWrappedRequestIncrement(t *testing.T) {
crypto.HandleTest(t, "increment", parseWrappedRequest)
}
func TestParseWrappedRequestSWU(t *testing.T) { crypto.HandleTest(t, "swu", parseWrappedRequest) }
func parseWrappedRequest(t *testing.T, h2cObj crypto.H2CObject) {
reqBytes, err := fakeWrappedRequest(h2cObj)
if err != nil {
t.Fatalf("it's all borked: %v", err)
}
var wrapped BlindTokenRequestWrapper
var request BlindTokenRequest
err = json.Unmarshal(reqBytes, &wrapped)
if err != nil {
t.Fatal(err)
}
err = json.Unmarshal(wrapped.Request, &request)
if err != nil {
t.Fatal(err)
}
if request.Type != ISSUE {
t.Errorf("got req type %s when expected %s", request.Type, ISSUE)
}
}
// Tests that token issuance works correctly for all curve choices
func TestTokenIssuanceIncrement(t *testing.T) { crypto.HandleTest(t, "increment", tokenIssuance) }
func TestTokenIssuanceSWU(t *testing.T) { crypto.HandleTest(t, "swu", tokenIssuance) }
func tokenIssuance(t *testing.T, h2cObj crypto.H2CObject) {
reqBytes, bP, err := fakeIssueRequest(h2cObj)
if err != nil {
t.Fatalf("it's all borked: %v", err)
}
var req BlindTokenRequest
err = json.Unmarshal(reqBytes, &req)
if err != nil {
t.Fatal(err)
}
if req.Type != ISSUE {
t.Fatalf("got issue request with type %s", req.Type)
}
key, G, H, err := fakeKeyAndCommitments(h2cObj)
if err != nil {
t.Fatal("couldn't fake the keys and commitments")
}
marshaledResp, err := ApproveTokens(req, key, "1.1", G, H)
if err != nil {
t.Fatal(err)
}
if bytes.Equal(marshaledResp.Sigs[0], req.Contents[0]) {
t.Fatal("approved tokens were same as submitted tokens")
}
// Verify DLEQ proof
dleq, err := crypto.UnmarshalBatchProof(h2cObj.Curve(), marshaledResp.Proof)
if err != nil {
t.Fatal(err)
}
dleq.G = G
dleq.H = H
Q := signTokens(bP, key)
dleq.M, dleq.Z, _ = recomputeComposites(G, H, bP, Q, h2cObj.Hash(), h2cObj.Curve())
if !dleq.Verify() {
t.Fatal("DLEQ proof failed to verify")
}
}
// Tests token redemption for multiple keys and curve implementations
func TestTokenRedemptionIncrement(t *testing.T) { crypto.HandleTest(t, "increment", tokenRedemption) }
func TestTokenRedemptionSWU(t *testing.T) { crypto.HandleTest(t, "swu", tokenRedemption) }
func tokenRedemption(t *testing.T, h2cObj crypto.H2CObject) {
x1, G1, H1, err := fakeKeyAndCommitments(h2cObj)
if err != nil {
t.Fatal(err)
}
x2, G2, H2, err := fakeKeyAndCommitments(h2cObj)
if err != nil {
t.Fatal(err)
}
x3, G3, H3, err := fakeKeyAndCommitments(h2cObj)
if err != nil {
t.Fatal(err)
}
// Redemption requests for all three keys
blRedempreq1, err := makeTokenRedempRequest(x1, G1, H1, h2cObj)
if err != nil {
t.Fatal(err)
}
blRedempreq2, err := makeTokenRedempRequest(x2, G2, H2, h2cObj)
if err != nil {
t.Fatal(err)
}
blRedempreq3, err := makeTokenRedempRequest(x3, G3, H3, h2cObj)
if err != nil {
t.Fatal(err)
}
// Only add two keys to check that the third redemption fails
redeemKeys := [][]byte{x1, x2}
// Server
// Check valid token redemption
err = RedeemToken(*blRedempreq1, testHost, testPath, redeemKeys)
if err != nil {
t.Fatal(err)
}
err = RedeemToken(*blRedempreq2, testHost, testPath, redeemKeys)
if err != nil {
t.Fatal(err)
}
// Check failed redemption
err = RedeemToken(*blRedempreq3, testHost, testPath, redeemKeys)
if err == nil {
t.Fatal("This redemption should not be verified correctly.")
}
}
// Tests that MAC fails for bad values for each curve setting
func TestBadMACIncrement(t *testing.T) { crypto.HandleTest(t, "increment", badMAC) }
func TestBadMACSWU(t *testing.T) { crypto.HandleTest(t, "swu", badMAC) }
func badMAC(t *testing.T, h2cObj crypto.H2CObject) {
x, G, H, err := fakeKeyAndCommitments(h2cObj)
if err != nil {
t.Fatal(err)
}
blRedempreq, err := makeTokenRedempRequest(x, G, H, h2cObj)
if err != nil {
t.Fatal(err)
}
// Server
// Check bad token redemption
err = RedeemToken(*blRedempreq, []byte("something bad"), []byte("something worse"), [][]byte{x})
if err == nil {
t.Fatal("No error occurred even though MAC should be bad")
}
}