-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.c
624 lines (531 loc) · 30 KB
/
util.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
#include <math.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include "../include/simd.h"
#include "../include/util.h"
#define BITBUF_SIZE 1024
#define CALC_SUS(p) (32 - (p < ALPHA_LEVEL) + (p < ALPHA_LEVEL && p >= STRICT_LEVEL) * 2)
double wh_transform(const u16 idx, const u32 test, const u8 offset)
{
const u8 limit = offset + 32;
register u32 num_mask = test;
register u8 ctr = offset;
register double final = 0;
int val;
do {
val = (1 - ((num_mask & 1) << 1));
final += (double) val * pow(-1.0, (double) POPCNT(idx & ctr));
num_mask >>= 1;
} while (++ctr < limit);
return final;
}
void get_print_metrics(u16 *center, u16 *indent, u16 *swidth)
{
struct winsize wsize;
ioctl(0, TIOCGWINSZ, &wsize);
*center = (wsize.ws_col >> 1);
*indent = (wsize.ws_col >> 4);
*swidth = wsize.ws_col;
}
u8 nearest_space(const char *str, u8 offset)
{
register u8 a, b;
a = b = offset;
while (str[a] && str[a] != ' ') {
--a;
}
while (str[b] && str[b] != ' ') {
++b;
}
return (b - offset < offset - a) ? b : a;
}
u8 err(const char *s)
{
fprintf(stderr, "\033[1;31m%s\033[m\n", s);
return 1;
}
u64 a_to_u(const char *s, const u64 min, const u64 max)
{
if (UNLIKELY(s == NULL || s[0] == '-')) {
return min;
}
register u8 len = 0;
register u64 val = 0;
for (; s[len] != '\0'; ++len) {
if (UNLIKELY(s[len] < '0' || s[len] > '9')) {
return 0;
}
}
switch (len) {
case 20:
val += 10000000000000000000LU;
case 19:
val += (s[len - 19] - '0') * 1000000000000000000LU;
case 18:
val += (s[len - 18] - '0') * 100000000000000000LU;
case 17:
val += (s[len - 17] - '0') * 10000000000000000LU;
case 16:
val += (s[len - 16] - '0') * 1000000000000000LU;
case 15:
val += (s[len - 15] - '0') * 100000000000000LU;
case 14:
val += (s[len - 14] - '0') * 10000000000000LU;
case 13:
val += (s[len - 13] - '0') * 1000000000000LU;
case 12:
val += (s[len - 12] - '0') * 100000000000LU;
case 11:
val += (s[len - 11] - '0') * 10000000000LU;
case 10:
val += (s[len - 10] - '0') * 1000000000LU;
case 9:
val += (s[len - 9] - '0') * 100000000LU;
case 8:
val += (s[len - 8] - '0') * 10000000LU;
case 7:
val += (s[len - 7] - '0') * 1000000LU;
case 6:
val += (s[len - 6] - '0') * 100000LU;
case 5:
val += (s[len - 5] - '0') * 10000LU;
case 4:
val += (s[len - 4] - '0') * 1000LU;
case 3:
val += (s[len - 3] - '0') * 100LU;
case 2:
val += (s[len - 2] - '0') * 10LU;
case 1:
val += (s[len - 1] - '0');
break;
default:
return 0;
}
return (val >= min || val < max + 1) ? val : 0;
}
u8 gen_uuid(const u64 higher, const u64 lower, u8 *buf)
{
// Fill buf with 16 random bytes
u128 tmp = ((u128) higher << 64) | lower;
MEMCPY(buf, &tmp, sizeof(u128));
/*
CODE AND COMMENT PULLED FROM CRYPTOSYS
(https://www.cryptosys.net/pki/Uuid.c.html)
Adjust certain bits according to RFC 4122 section 4.4.
This just means do the following
(a) set the high nibble of the 7th byte equal to 4 and
(b) set the two most significant bits of the 9th byte to 10'B,
so the high nibble will be one of {8,9,A,B}.
*/
buf[6] = 0x40 | (buf[6] & 0xf);
buf[8] = 0x80 | (buf[8] & 0x3f);
return 0;
}
/*
To make writes more efficient, rather than writing one
number at a time, 16 numbers are parsed together and then
written to stdout with 1 fwrite call.
*/
static char bitbuffer[BITBUF_SIZE] ALIGN(SIMD_LEN);
#ifdef __AARCH64_SIMD__
static void print_binary(u8 *restrict _bptr, u64 num)
{
// Copying bit masks to high and low halves
// 72624976668147840 == {128, 64, 32, 16, 8, 4, 2, 1}
const reg8q masks = SIMD_COMBINE8(
SIMD_CREATE8(72624976668147840),
SIMD_CREATE8(72624976668147840));
const reg8q zero = SIMD_SET8('0');
// Repeat all 8 bytes 8 times each, to fill up r1 with 64 bytes total
// Then we bitwise AND with masks to turn each byte into a 1 or 0
reg8q4 r1;
r1.val[0] = SIMD_COMBINE8(SIMD_MOV8((num >> 56) & 0xFF),
SIMD_MOV8((num >> 48) & 0xFF));
r1.val[1] = SIMD_COMBINE8(SIMD_MOV8((num >> 40) & 0xFF),
SIMD_MOV8((num >> 32) & 0xFF));
r1.val[2] = SIMD_COMBINE8(SIMD_MOV8((num >> 24) & 0xFF),
SIMD_MOV8((num >> 16) & 0xFF));
r1.val[3] = SIMD_COMBINE8(SIMD_MOV8((num >> 8) & 0xFF), SIMD_MOV8(num & 0xFF));
SIMD_AND4Q8(r1, r1, masks);
SIMD_CMP4QEQ8(r1, r1, masks);
SIMD_AND4Q8(r1, r1, SIMD_SET8(1));
// '0' = 48, '1' = 49. This is how we print the number
SIMD_ADD4Q8(r1, r1, zero);
SIMD_STORE8x4(_bptr, r1);
}
#else
static void print_binary(u8 *restrict _bptr, u64 num)
{
u8 bytes[sizeof(u64)];
MEMCPY(bytes, &num, sizeof(u64));
const reg zeroes = SIMD_SET8('0');
const reg masks = SIMD_SETR8(BYTE_MASKS, BYTE_MASKS, BYTE_MASKS, BYTE_MASKS
#ifdef __AVX512F__
,
BYTE_MASKS, BYTE_MASKS, BYTE_MASKS, BYTE_MASKS
#endif
);
reg r1 = SIMD_SETR8(BYTE_REPEAT(7), BYTE_REPEAT(6), BYTE_REPEAT(5), BYTE_REPEAT(4)
#ifdef __AVX512F__
,
BYTE_REPEAT(3), BYTE_REPEAT(2), BYTE_REPEAT(1), BYTE_REPEAT(0)
#endif
);
r1 = SIMD_ANDBITS(r1, masks);
r1 = SIMD_CMPEQ8(r1, masks);
r1 = SIMD_ANDBITS(r1, SIMD_SET8(1));
r1 = SIMD_ADD8(r1, zeroes);
SIMD_STOREBITS((reg *) _bptr, r1);
#ifndef __AVX512F__
r1 = SIMD_SETR8(BYTE_REPEAT(3), BYTE_REPEAT(2), BYTE_REPEAT(1),
BYTE_REPEAT(0));
r1 = SIMD_ANDBITS(r1, masks);
r1 = SIMD_CMPEQ8(r1, masks);
r1 = SIMD_ANDBITS(r1, SIMD_SET8(1));
r1 = SIMD_ADD8(r1, zeroes);
SIMD_STOREBITS((reg *) &_bptr[SIMD_LEN], r1);
#endif
}
#endif
// prints all bits in a buffer as chunks of 1024 bits
void print_ascii_bits(u64 *_ptr, const u64 limit)
{
#define PRINT_4(i, j) print_binary((u8 *) &bitbuffer[i], _ptr[j]), \
print_binary((u8 *) &bitbuffer[64 + i], _ptr[j + 1]), \
print_binary((u8 *) &bitbuffer[128 + i], _ptr[j + 2]), \
print_binary((u8 *) &bitbuffer[192 + i], _ptr[j + 3])
register u64 i = 0;
do {
PRINT_4(0, i + 0);
PRINT_4(256, i + 4);
PRINT_4(512, i + 8);
PRINT_4(768, i + 12);
fwrite(&bitbuffer[0], 1, BITBUF_SIZE, stdout);
i += 16;
} while (limit - i >= 16);
do {
print_binary((u8 *) &bitbuffer[0], _ptr[i]);
fwrite(&bitbuffer[0], sizeof(u8), 64, stdout);
} while (++i < limit);
}
static u8 calc_padding(u64 num)
{
register u8 pad = 0;
do {
++pad;
} while ((num /= 10) > 0);
return pad;
}
void print_basic_results(const u16 indent, const u64 limit, const basic_test *rsl)
{
const u64 output = rsl->sequences;
register u64 bytes = limit >> 3;
char unit = 'M';
if (bytes >= 1000000000UL) {
bytes /= 1000000000UL;
unit = 'G';
} else {
bytes /= 1000000UL;
}
printf("\033[1;34m\033[%uC Output Size: \033[m%llu BITS (%llu%cB)\n", indent, output << 6, bytes, unit);
printf("\033[2m\033[%uC a. u64: \033[m%llu\n", indent, output);
printf("\033[2m\033[%uC b. u32: \033[m%llu\n", indent, output << 1);
printf("\033[2m\033[%uC c. u16: \033[m%llu\n", indent, output << 2);
printf("\033[2m\033[%uC d. u8: \033[m%llu\n", indent, output << 3);
printf("\033[1;34m\033[%uC 256-bit Seed (u64 x 4): \033[m0x%016llX, 0x%016llX,\n", indent, rsl->seed[0], rsl->seed[1]);
printf("\033[%uC 0x%016llX, 0x%016llX\n", indent, rsl->seed[2], rsl->seed[3]);
printf("\033[1;34m\033[%uC 96-bit Nonce (u32 x 3): \033[m0x%08X, 0x%08X, 0x%08X\n", indent, rsl->nonce[0], rsl->nonce[1], rsl->nonce[2]);
}
void print_mfreq_results(const u16 indent, const u64 output, const mfreq_test *rsl)
{
const u64 zeroes = (output << 6) - rsl->mfreq;
const u64 expected_bits = (double) (output << 6) * MFREQ_PROB;
register double chi_calc = (pow((double) zeroes - expected_bits, 2) / (double) ((output << 6) - expected_bits)) + (pow((double) rsl->mfreq - expected_bits, 2) / (double) expected_bits);
const double p_value = cephes_igamc(1, chi_calc / 2);
const u8 suspect_level = CALC_SUS(p_value);
const u8 precision = 2 + (p_value < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uC Monobit Frequency:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, p_value);
printf("\033[2m\033[%uC a. Raw Chi-Square:\033[m %1.3lf (cv = %.3lf)\n", indent, chi_calc, MFREQ_CRITICAL_VALUE);
printf("\033[2m\033[%uC b. Ones:\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, rsl->mfreq, expected_bits, rsl->mfreq - expected_bits);
printf("\033[2m\033[%uC c. Zeroes:\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, zeroes, expected_bits, zeroes - expected_bits);
printf("\033[2m\033[%uC d. Total Number of Runs:\033[m %llu\n", indent, rsl->one_runs + rsl->zero_runs);
printf("\033[2m\033[%uC e. Runs Of Ones:\033[m %llu\n", indent, rsl->one_runs);
printf("\033[2m\033[%uC f. Runs Of Zeroes:\033[m %llu\n", indent, rsl->zero_runs);
printf("\033[2m\033[%uC g. Longest Run:\033[m %llu (ONES)\n", indent, rsl->longest_one);
printf("\033[2m\033[%uC h. Longest Run:\033[m %llu (ZEROES)\n", indent, rsl->longest_zero);
}
void print_byte_results(const u16 indent, const basic_test *rsl)
{
printf("\033[1;34m\033[%uC Average Gap Length:\033[m %llu (ideal = 256)\n", indent, (u64) rsl->avg_gap);
printf("\033[1;34m\033[%uC Most Common Bytes:\033[m 0x%02llX, 0x%02llX, 0x%02llX, 0x%02llX\n", indent, rsl->mcb[0], rsl->mcb[1], rsl->mcb[2], rsl->mcb[3]);
printf("\033[1;34m\033[%uC Least Common Bytes:\033[m 0x%02llX, 0x%02llX, 0x%02llX, 0x%02llX\n", indent, rsl->lcb[0], rsl->lcb[1], rsl->lcb[2], rsl->lcb[3]);
printf("\033[1;34m\033[%uC Total Number of Runs:\033[m %llu\n", indent, rsl->up_runs + rsl->down_runs);
printf("\033[2m\033[%uC a. Increasing:\033[m %llu\n", indent, rsl->up_runs);
printf("\033[2m\033[%uC b. Decreasing:\033[m %llu\n", indent, rsl->down_runs);
printf("\033[2m\033[%uC c. Longest Run:\033[m %llu (INCREASING)\n", indent, rsl->longest_up);
printf("\033[2m\033[%uC d. Longest Run:\033[m %llu (DECREASING)\n", indent, rsl->longest_down);
}
void print_range_results(const u16 indent, const u64 output, const range_test *rsl)
{
const u64 expected[RANGE_CAT] = {
output * RANGE_PROB1,
output * RANGE_PROB2,
output * RANGE_PROB3,
output * RANGE_PROB4,
output * RANGE_PROB5
};
const u8 pad = calc_padding(rsl->range_dist[4]) + 1;
const u8 exp_pad = calc_padding(expected[4]) + 2;
printf("\033[1;34m\033[%uC Minimum Value:\033[m %llu\n", indent, rsl->min);
printf("\033[1;34m\033[%uC Maximum Value:\033[m %llu\n", indent, rsl->max);
printf("\033[1;34m\033[%uC Range:\033[m %llu\n", indent, rsl->max - rsl->min);
printf("\033[2m\033[%uC a. [0, 2³²):\033[m %*llu (exp. %llu%*s \033[1m%+lli\033[m)\n", indent, pad, rsl->range_dist[0], expected[0], exp_pad - calc_padding(expected[0]), ":", (long long) (rsl->range_dist[0] - expected[0]));
printf("\033[2m\033[%uC b. [2³², 2⁴⁰):\033[m %*llu (exp. %llu%*s \033[1m%+lli\033[m)\n", indent, pad, rsl->range_dist[1], expected[1], exp_pad - calc_padding(expected[1]), ":", (long long) (rsl->range_dist[1] - expected[1]));
printf("\033[2m\033[%uC c. [2⁴⁰, 2⁴⁸):\033[m %*llu (exp. %llu%*s \033[1m%+lli\033[m)\n", indent, pad, rsl->range_dist[2], expected[2], exp_pad - calc_padding(expected[2]), ":", (long long) (rsl->range_dist[2] - expected[2]));
printf("\033[2m\033[%uC d. [2⁴⁸, 2⁵⁶):\033[m %*llu (exp. %llu%*s \033[1m%+lli\033[m)\n", indent, pad, rsl->range_dist[3], expected[3], exp_pad - calc_padding(expected[3]), ":", (long long) (rsl->range_dist[3] - expected[3]));
printf("\033[2m\033[%uC e. [2⁵⁶, 2⁶⁴):\033[m %*llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, pad, rsl->range_dist[4], expected[4], (long long) (rsl->range_dist[4] - expected[4]));
printf("\033[1;34m\033[%uC Even Numbers:\033[m %llu (%u%%)\n", indent, output - rsl->odd, (u8) (((double) (output - rsl->odd) / (double) output) * 100));
printf("\033[1;34m\033[%uC Odd Numbers:\033[m %llu (%u%%)\n", indent, rsl->odd, (u8) (((double) rsl->odd / (double) output) * 100));
}
void print_ent_results(const u16 indent, const ent_test *rsl)
{
char *chi_str;
char chi_tmp[6];
const u8 suspect_level = CALC_SUS(rsl->pochisq);
const u8 precision = 2 + (rsl->pochisq < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uC Entropy:\033[m %.5lf %9s per byte)\n", indent, rsl->ent, "(bits");
printf("\033[1;34m\033[%uC ENT Chi-Square:\033[m %1.3lf\033[m %14s\033[1;%um%1.*lf\033[m)\n", indent, rsl->chisq, "(p-value = ", suspect_level, precision, rsl->pochisq);
printf("\033[1;34m\033[%uC Arithmetic Mean:\033[m %1.3lf%21s\n", indent, rsl->mean, "(127.5 = random)");
printf("\033[1;34m\033[%uC Monte Carlo Value for Pi:\033[m %1.9lf (error: %1.2f%%)\n", indent, rsl->montepicalc, rsl->monterr);
if (rsl->scc >= -99999) {
double scc = rsl->scc;
if (rsl->scc < 0) {
scc *= -1.0;
}
printf("\033[1;34m\033[%uC Serial Correlation: \033[m%1.6f%32s\n", indent, scc, "(totally uncorrelated = 0.0)");
} else {
printf("\033[1;34m\033[%uC Serial Correlation: \033[1;31mUNDEFINED\033[m %32s\n", indent, "(all values equal!)");
}
}
void print_fp_results(const u16 indent, const u64 output, const fp_test *rsl)
{
register double expected = output * FPF_PROB;
/* FREQUENCY */
register double chi_calc = 0.0;
register u8 i = 0;
for (; i < FPF_CAT; ++i)
chi_calc += pow((rsl->fpf_dist[i] - expected), 2) / expected;
// Divide frequency values into "quadrants" and report observed vs expected values
double delta[4];
expected = (double) output * 0.25;
for (u8 i = 0; i < 4; ++i)
delta[i] = rsl->fpf_quad[i] - expected;
register double p_value = cephes_igamc(FPF_CAT / 2, chi_calc / 2);
register u8 suspect_level = CALC_SUS(p_value);
register u8 precision = 2 + (p_value < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uC FP Frequency:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, p_value);
printf("\033[2m\033[%uC a. Raw Chi-Square:\033[m %1.3lf (cv = %.3lf)\n", indent, chi_calc, FPF_CRITICAL_VALUE);
printf("\033[2m\033[%uC b. Average FP Value:\033[m %1.15lf (ideal = 0.5)\n", indent, rsl->avg_fp);
printf("\033[2m\033[%uC c. (0.0, 0.25):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, rsl->fpf_quad[0], (u64) expected, (long long) delta[0]);
printf("\033[2m\033[%uC d. [0.25, 0.5):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, rsl->fpf_quad[1], (u64) expected, (long long) delta[1]);
printf("\033[2m\033[%uC e. [0.5, 0.75):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, rsl->fpf_quad[2], (u64) expected, (long long) delta[2]);
printf("\033[2m\033[%uC f. [0.75, 1.0):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, rsl->fpf_quad[3], (u64) expected, (long long) delta[3]);
/* PERMUTATIONS */
expected = rsl->perms * FP_PERM_PROB;
chi_calc = 0;
i = 0;
double average = 0.0;
for (; i < FP_PERM_CAT; ++i) {
average += rsl->fp_perms[i];
chi_calc += pow(((double) rsl->fp_perms[i] - expected), 2) / expected;
}
// Get standard deviation for observed permutation orderings
average /= FP_PERM_CAT;
register double std_dev = 0.0;
i = 0;
for (; i < FP_PERM_CAT; ++i) {
std_dev += pow(((double) rsl->fp_perms[i] - average), 2);
}
std_dev = sqrt(std_dev / (double) (FP_PERM_CAT - 1));
p_value = cephes_igamc(FP_PERM_CAT / 2, chi_calc / 2);
suspect_level = CALC_SUS(p_value);
precision = 2 + (p_value < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uC FP Permutations:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, p_value);
printf("\033[2m\033[%uC a. Raw Chi-Square:\033[m %1.3lf (cv = %1.3lf)\n", indent, chi_calc, FP_PERM_CRITICAL_VALUE);
printf("\033[2m\033[%uC b. Total Permutations:\033[m %llu\n", indent, rsl->perms);
printf("\033[2m\033[%uC c. Average Per Bin:\033[m %llu (\033[1m%+lli\033[m: exp. %llu)\n", indent, (u64) average, (u64) average - (u64) expected, (u64) expected);
printf("\033[2m\033[%uC d. Standard Deviation:\033[m %1.3lf\n", indent, std_dev);
/* MAX-OF-8 */
expected = (rsl->fp_max_runs) * FP_MAX_PROB;
i = 0;
average = chi_calc = 0.0;
register u8 most_pos, least_pos;
most_pos = least_pos = 0;
for (; i < FP_MAX_CAT; ++i) {
most_pos = (rsl->fp_max_dist[most_pos] > rsl->fp_max_dist[i]) ? most_pos : i;
least_pos = (rsl->fp_max_dist[least_pos] < rsl->fp_max_dist[i]) ? least_pos : i;
chi_calc += pow(((double) rsl->fp_max_dist[i] - expected), 2) / expected;
}
p_value = cephes_igamc(FP_MAX_CAT / 2, chi_calc / 2);
suspect_level = CALC_SUS(p_value);
precision = 2 + (p_value < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uC FP Max-of-8:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, p_value);
printf("\033[2m\033[%uC a. Raw Chi-Square:\033[m %1.3lf (cv = %1.3lf)\n", indent, chi_calc, FP_MAX_CRITICAL_VALUE);
printf("\033[2m\033[%uC b. Total Sets:\033[m %llu\n", indent, rsl->fp_max_runs);
printf("\033[2m\033[%uC c. Most Common Position:\033[m %u (exp. %llu : \033[1m%+lli\033[m)\n", indent, most_pos + 1, (u64) expected, rsl->fp_max_dist[most_pos] - (u64) expected);
printf("\033[2m\033[%uC d. Least Common Position:\033[m %u (exp. %llu : \033[1m%+lli\033[m)\n", indent, least_pos + 1, (u64) expected, rsl->fp_max_dist[least_pos] - (u64) expected);
}
void print_sp_results(const u16 indent, const rng_test *rsl, const u64 *sat_dist, const u64 *sat_range)
{
const u64 output = sat_range[0] + sat_range[1] + sat_range[2] + sat_range[3] + sat_range[4];
const double expected[SP_CAT] = {
(double) output * SP_PROB1,
(double) output * SP_PROB2,
(double) output * SP_PROB3,
(double) output * SP_PROB4,
(double) output * SP_PROB5
};
register double average, chi_calc;
average = chi_calc = 0.0;
register u8 i = 0;
register u64 count = 0;
do {
count += sat_dist[i];
average += sat_dist[i] * (i + 16);
} while (++i < SP_DIST);
average /= count;
register u64 tmp;
tmp = i = 0;
for (; i < SP_CAT; ++i) {
chi_calc += pow(((double) sat_range[i] - expected[i]), 2) / expected[i];
tmp = MAX(tmp, sat_range[i]);
}
const u8 pad = calc_padding(tmp);
const double p_value = cephes_igamc(SP_CAT / 2.0, chi_calc / 2.0);
const u8 suspect_level = CALC_SUS(p_value);
const u8 precision = 2 + (p_value < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uC Saturation Point Test:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, p_value);
printf("\033[2m\033[%uC a. Raw Chi-Square:\033[m %1.3lf (cv = %.3lf)\n", indent, chi_calc, SP_CRITICAL_VALUE);
printf("\033[2m\033[%uCb. Average Saturation Point:\033[m %llu (ideal = %u)\n", indent - 1, (u64) average, SP_EXPECTED);
printf("\033[2m\033[%uC c. [16, 39):\033[m %*llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, pad, sat_range[0], (u64) expected[0], sat_range[0] - (u64) expected[0]);
printf("\033[2m\033[%uC d. [39, 46):\033[m %*llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, pad, sat_range[1], (u64) expected[1], sat_range[1] - (u64) expected[1]);
printf("\033[2m\033[%uC e. [46, 55):\033[m %*llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, pad, sat_range[2], (u64) expected[2], sat_range[2] - (u64) expected[2]);
printf("\033[2m\033[%uC f. [54, 64]:\033[m %*llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, pad, sat_range[3], (u64) expected[3], sat_range[3] - (u64) expected[3]);
printf("\033[2m\033[%uC g. [65, INF):\033[m %*llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, pad, sat_range[4], (u64) expected[4], sat_range[4] - (u64) expected[4]);
}
void print_maurer_results(const u16 indent, maurer_test *rsl)
{
const double lower_bound = MAURER_EXPECTED - (MAURER_Y * rsl->std_dev);
const double upper_bound = MAURER_EXPECTED + (MAURER_Y * rsl->std_dev);
const double pass_rate = (double) rsl->pass / (double) rsl->trials;
// we don't explicitly halve the df value because chi-square for fisher method
// value uses 2K df, so after halving it becomes the original value k
const double p_value = cephes_igamc(rsl->trials, rsl->fisher / 2);
const u8 suspect_level = CALC_SUS(p_value);
const u8 precision = 2 + (p_value < ALPHA_LEVEL) * 6;
rsl->mean /= rsl->trials;
printf("\033[1;34m\033[%uCMaurer Universal Statistic:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, p_value);
printf("\033[2m\033[%uCa. Raw Fisher's Method Value:\033[m %1.3lf\n", indent - 2, rsl->fisher);
printf("\033[2m\033[%uC b. Mean:\033[m %1.7lf (exp. %1.7lf : %+1.7lf)\n", indent, rsl->mean, MAURER_EXPECTED, rsl->mean - MAURER_EXPECTED);
printf("\033[2m\033[%uC c. Pass Rate:\033[m %llu/%llu (%llu%%)\n", indent, rsl->pass, rsl->trials, (u64) (pass_rate * 100.0));
printf("\033[2m\033[%uC d. C:\033[m %1.3lf\n", indent, MAURER_C);
printf("\033[2m\033[%uC e. Standard Deviation:\033[m %1.7lf\n", indent, rsl->std_dev);
printf("\033[2m\033[%uC f. Lower Bound:\033[m %1.7lf\n", indent, lower_bound);
printf("\033[2m\033[%uC g. Upper Bound:\033[m %1.7lf\n", indent, upper_bound);
}
void print_tbt_results(const u16 indent, const tb_test *topo)
{
const double proportion = (double) topo->prop_sum / ((double) topo->trials * TBT_SEQ_SIZE);
const u16 average_distinct = topo->prop_sum / topo->trials;
const u8 pass_rate = ((double) topo->pass_rate / (double) topo->trials) * 100;
printf("\033[1;34m\033[%uC Topological Binary Test:\033[m %llu/%llu (%u%%)\n", indent, topo->pass_rate, topo->trials, pass_rate);
printf("\033[2m\033[%uCa. Average Distinct Patterns:\033[m %u (cv = %u)\n", indent - 2, average_distinct, TBT_CRITICAL_VALUE);
printf("\033[2m\033[%uC b. Proportion:\033[m %.3lf (min. %.3f)\n", indent, proportion, TBT_PROPORTION);
}
void print_vnt_results(const u16 indent, const vn_test *von)
{
const double seq_pass_rate = (double) von->pass_rate / (double) von->trials;
const u8 suspect_level = CALC_SUS(von->p_value);
const u8 precision = 2 + (von->p_value < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uC Von Neumann Ratio Test:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, von->p_value);
printf("\033[2m\033[%uCa. Raw Fisher's Method Value:\033[m %1.3lf\n", indent - 2, von->fisher);
printf("\033[2m\033[%uC b. Pass Rate:\033[m %llu/%llu (%llu%%)\n", indent, von->pass_rate, von->trials, (u64) (seq_pass_rate * 100.0));
}
void print_avalanche_results(const u16 indent, const basic_test *rsl, const u64 *ham_dist)
{
// See test.h for more details on these probabilities
static double expected[65] = {
// clang-format off
5.421010862427522E-20, 3.469446951953614E-18, 1.092875789865388E-16, 2.258609965721802E-15,
3.444380197725749E-14, 4.133256237270899E-13, 4.064368633316384E-12, 3.367619724747861E-11,
2.399429053882851E-10, 1.492978077971551E-9, 8.211379428843534E-9, 4.031040810523189E-8,
1.780376357981075E-7, 7.121505431924302E-7, 2.594262693058138E-6, 8.647542310193795E-6,
0.000026483098324, 0.000074775807035, 0.000195247940591, 0.000472705540380,
0.001063587465856, 0.002228468976079, 0.004355643907791, 0.007953784527271,
0.013587715234088, 0.021740344374540, 0.032610516561811, 0.045896282568475,
0.060648659108342, 0.075287990617252, 0.087835989053460, 0.096336246058634,
0.099346753747966, 0.096336246058634, 0.087835989053460, 0.075287990617252,
0.060648659108342, 0.045896282568475, 0.032610516561811, 0.021740344374540,
0.013587715234088, 0.007953784527271, 0.004355643907791, 0.002228468976079,
0.001063587465856, 0.000472705540380, 0.000195247940591, 0.000074775807035,
0.000026483098324, 8.647542310193795E-6, 2.594262693058138E-6, 7.121505431924302E-7,
1.780376357981075E-7, 4.031040810523190E-8, 8.211379428843530E-9, 1.492978077971551E-9,
2.399429053882851E-10, 3.367619724747861E-11, 4.064368633316384E-12, 4.133256237270899E-13,
3.444380197725749E-14, 2.258609965721803E-15, 1.092875789865388E-16, 3.469446951953614E-16,
5.421010862427522E-20
// clang-format on
};
const u64 output = rsl->sequences;
double bin_counts[4] = { 0.0, 0.0, 0.0, 0.0 };
double quadrants[4] = { 0.0, 0.0, 0.0, 0.0 };
register double average = 0.0;
register u8 i = 0;
do {
quadrants[i >> 4] += ham_dist[i];
expected[i] *= output;
bin_counts[i >> 4] += (u64) expected[i];
average += ham_dist[i] * i;
} while (++i < 65);
// In addition to the usual chisq calc logic, we also figure out the
// right amount of padding based on length of expected bin counts
register double chi_calc = 0.0;
register u32 tmp = 0;
register u8 bin_pad = 6;
i = 0;
do {
chi_calc += pow((quadrants[i] - bin_counts[i]), 2) / bin_counts[i];
tmp |= (u32) calc_padding(bin_counts[i]) << (i << 3);
bin_pad = MAX(bin_pad, ((u8) (tmp >> (i << 3))));
} while (++i < AVALANCHE_CAT);
// Add one for a space
++bin_pad;
average /= (quadrants[0] + quadrants[1] + quadrants[2] + quadrants[3]);
const double p_value = cephes_igamc(AVALANCHE_CAT / 2, chi_calc / 2.0);
const u8 suspect_level = CALC_SUS(p_value);
const u8 precision = 2 + (p_value < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uCStrict Avalanche Criterion:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, p_value);
printf("\033[2m\033[%uC a. Raw Chi-Square:\033[m %1.3lf (cv = %.3lf)\033[m\n", indent, chi_calc, AVALANCHE_CRITICAL_VALUE);
printf("\033[2m\033[%uC b. Mean Hamming Distance:\033[m %2.3lf (ideal = %u)\n", indent, average, 32);
printf("\033[2m\033[%uC c. [0, 16):\033[m %*llu (exp. %llu%*s \033[1m%+lli\033[m)\n", indent, bin_pad, (u64) quadrants[0], (u64) bin_counts[0], bin_pad - (tmp & 0xFF), ":", (u64) quadrants[0] - (u64) bin_counts[0]);
printf("\033[2m\033[%uC d. [16, 32):\033[m %*llu (exp. %llu%*s \033[1m%+lli\033[m)\n", indent, bin_pad, (u64) quadrants[1], (u64) bin_counts[1], bin_pad - (u8) (tmp >> 8), ":", (u64) quadrants[1] - (u64) bin_counts[1]);
printf("\033[2m\033[%uC e. [32, 48):\033[m %*llu (exp. %llu%*s \033[1m%+lli\033[m)\n", indent, bin_pad, (u64) quadrants[2], (u64) bin_counts[2], bin_pad - (u8) (tmp >> 16), ":", (u64) quadrants[2] - (u64) bin_counts[2]);
printf("\033[2m\033[%uC f. [48, 64]:\033[m %*llu (exp. %llu%*s \033[1m%+lli\033[m)\n", indent, bin_pad, (u64) quadrants[3], (u64) bin_counts[3], bin_pad - (u8) (tmp >> 24), ":", (u64) quadrants[3] - (u64) bin_counts[3]);
}
void print_wht_results(const u16 indent, const wh_test *walsh)
{
const u64 num_total = walsh->trials * (TESTING_BITS >> 7);
const double u32_pass_rate = (double) walsh->pass_num / (double) num_total;
const double seq_pass_rate = (double) walsh->pass_seq / (double) (num_total >> 7);
const u64 expected = (double) (num_total >> 7) * 0.1;
const u8 suspect_level = CALC_SUS(walsh->p_value);
const u8 precision = 2 + (walsh->p_value < ALPHA_LEVEL) * 6;
printf("\033[1;34m\033[%uC WH Transform Test:\033[m\033[1;%um %1.*lf\033[m\n", indent, suspect_level, precision, walsh->p_value);
printf("\033[2m\033[%uCa. Raw Fisher's Method Value:\033[m %1.3lf\n", indent - 2, walsh->fisher);
printf("\033[2m\033[%uC b. Pass Rate:\033[m %llu/%llu (%llu%% : SEQUENCES)\n", indent, walsh->pass_seq, num_total >> 7, (u64) (seq_pass_rate * 100.0));
printf("\033[2m\033[%uC c. Pass Rate:\033[m %llu/%llu (%llu%% : U128)\n", indent, walsh->pass_num, num_total, (u64) (u32_pass_rate * 100.0));
printf("\033[2m\033[%uC d. (0.0, 0.2):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, walsh->dist[0], expected, walsh->dist[0] - expected);
printf("\033[2m\033[%uC e. [0.2, 0.4):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, walsh->dist[1], expected, walsh->dist[1] - expected);
printf("\033[2m\033[%uC f. [0.4, 0.6):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, walsh->dist[2], expected, walsh->dist[2] - expected);
printf("\033[2m\033[%uC g. [0.6, 0.8):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, walsh->dist[3], expected, walsh->dist[3] - expected);
printf("\033[2m\033[%uC h. [0.8, 1.0):\033[m %llu (exp. %llu : \033[1m%+lli\033[m)\n", indent, walsh->dist[4], expected, walsh->dist[4] - expected);
}