GENUI-ADK is a proof-of-concept project that delivers rapid UI personalization for users visiting any website. It leverages a generative approach to dynamically tailor experiences in real-time.
- Frontend: Built with React
- Backend: Powered by Google's Agent Development Kit (ADK)
- Personalized UI generation at runtime
- Modular and extensible architecture
- Seamless integration of React UI with ADK agents
Below is the architecture diagram for the GENUI-ADK
- Python ≥ 3.9
- Node.js & npm
python3 -m venv .venv
source .venv/bin/activatecd server
pip install -r requirements.txt
cp .env.example .env
# Edit the .env file and add necessary credentials
adk run <folder_name>cd server
adk api_server
adk api_server --allow_origins http://localhost:3000cd server
adk webUse the resource - ADK Testing
cd client
npm install
npm run startVisit the application at: http://localhost:3000
GENUI/
├── client/ # React frontend
├── server/ # ADK backend
├── .env.example # Environment variables template
└── README.md # Project overview and setupThe ApiGateway acts as a gateway server for token access, for accessing agent layer endpoints and image generation tool
Create and Activate the Python Environment
python3 -m venv .venv
source .venv/bin/activateCreate .env and Set the Required Environment Variables
GOOGLE_API_KEY=" "
CLOUDINARY_CLOUD_NAME=' '
CLOUDINARY_API_KEY=' '
CLOUDINARY_API_SECRET=' '
IMG_MODEL = " "
docker buildx build -t apigatewaygenui --platform linux/amd64 .
docker tag apigatewaygenui:latest us-central1-docker.pkg.dev/genuiagent/apigatewaygenui/apigatewaygenui:latest
docker push us-central1-docker.pkg.dev/genuiagent/apigatewaygenui/apigatewaygenui:latest
Manually create a cloud run deployment using the above image in GCP portal and deploy it
Create .env and Set the Required Environment Variables
GOOGLE_CLOUD_PROJECT=""
GOOGLE_CLOUD_LOCATION=""
GOOGLE_CLOUD_STAGING_BUCKET=""
GOOGLE_API_KEY=''
GOOGLE_GENAI_USE_VERTEXAI=FALSE
AZURE_API_KEY=""
AZURE_API_BASE=""
AZURE_API_VERSION=""
CLOUDINARY_CLOUD_NAME=''
CLOUDINARY_API_KEY=''
CLOUDINARY_API_SECRET=''
FASTAPI_URL = ""
GEMINI_MODEL = ""
MODEL_GPT_41 = ""
Run the below command to deploy the Agent Layer in the server to Vertex AI Agent Engine
cd server/deployment
python deploy.py

