This notebook provides some skills to perform Time-Series-Analysis.
- The datetime module
- Time Series with Pandas
- Time Resampling
- Time Shifting
- Rolling and Expanding
- Visualizing Time Series Data
- Plot Formatting
- Statsmodels
- Moving Averages (MA)
- Simple Moving Average (SMA)
- Exponentially Weighted Moving Average (EWMA)
- Holt-Winters Methods
- Forecasting
- Stationarity
- Differencing
- First Order Differencing
- Second order differencing
- Lagging
- Autocorrelation Function / Partial Autocorrelation Function
- AR(p) - Autoregressive Model
- Descriptive Statistics and Tests
- Tests for Stationarity
- Augmented Dickey-Fuller Test
- Granger Causality Tests
- Evaluating forecast accuracy
- Choosing ARIMA Orders
- Autoregressive Moving Average - ARMA(p,q)
- Autoregressive Integrated Moving Average - ARIMA(p,d,q)
- SARIMA(p,d,q)(P,D,Q)m
- SARIMAX
- VAR(p) - Vector Autoregression
- VARMA(p,q) - Vector Autoregressive Moving Average
- Keras Basics
- Time Series Generator
- Saving and Loading Models
- Facebook's Prophet Basics