forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_train.py
63 lines (47 loc) · 1.49 KB
/
logistic_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from process import get_binary_data
# get the data
Xtrain, Ytrain, Xtest, Ytest = get_binary_data()
# randomly initialize weights
D = Xtrain.shape[1]
W = np.random.randn(D)
b = 0 # bias term
# make predictions
def sigmoid(a):
return 1 / (1 + np.exp(-a))
def forward(X, W, b):
return sigmoid(X.dot(W) + b)
# calculate the accuracy
def classification_rate(Y, P):
return np.mean(Y == P)
# cross entropy
def cross_entropy(T, pY):
return -np.mean(T*np.log(pY) + (1 - T)*np.log(1 - pY))
# train loop
train_costs = []
test_costs = []
learning_rate = 0.001
for i in range(10000):
pYtrain = forward(Xtrain, W, b)
pYtest = forward(Xtest, W, b)
ctrain = cross_entropy(Ytrain, pYtrain)
ctest = cross_entropy(Ytest, pYtest)
train_costs.append(ctrain)
test_costs.append(ctest)
# gradient descent
W -= learning_rate*Xtrain.T.dot(pYtrain - Ytrain)
b -= learning_rate*(pYtrain - Ytrain).sum()
if i % 1000 == 0:
print(i, ctrain, ctest)
print("Final train classification_rate:", classification_rate(Ytrain, np.round(pYtrain)))
print("Final test classification_rate:", classification_rate(Ytest, np.round(pYtest)))
plt.plot(train_costs, label='train cost')
plt.plot(test_costs, label='test cost')
plt.legend()
plt.show()