forked from halfrost/LeetCode-Go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSegmentTree.go
265 lines (234 loc) · 9.71 KB
/
SegmentTree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
package template
// SegmentTree define
type SegmentTree struct {
data, tree, lazy []int
left, right int
merge func(i, j int) int
}
// Init define
func (st *SegmentTree) Init(nums []int, oper func(i, j int) int) {
st.merge = oper
data, tree, lazy := make([]int, len(nums)), make([]int, 4*len(nums)), make([]int, 4*len(nums))
for i := 0; i < len(nums); i++ {
data[i] = nums[i]
}
st.data, st.tree, st.lazy = data, tree, lazy
if len(nums) > 0 {
st.buildSegmentTree(0, 0, len(nums)-1)
}
}
// 在 treeIndex 的位置创建 [left....right] 区间的线段树
func (st *SegmentTree) buildSegmentTree(treeIndex, left, right int) {
if left == right {
st.tree[treeIndex] = st.data[left]
return
}
midTreeIndex, leftTreeIndex, rightTreeIndex := left+(right-left)>>1, st.leftChild(treeIndex), st.rightChild(treeIndex)
st.buildSegmentTree(leftTreeIndex, left, midTreeIndex)
st.buildSegmentTree(rightTreeIndex, midTreeIndex+1, right)
st.tree[treeIndex] = st.merge(st.tree[leftTreeIndex], st.tree[rightTreeIndex])
}
func (st *SegmentTree) leftChild(index int) int {
return 2*index + 1
}
func (st *SegmentTree) rightChild(index int) int {
return 2*index + 2
}
// 查询 [left....right] 区间内的值
// Query define
func (st *SegmentTree) Query(left, right int) int {
if len(st.data) > 0 {
return st.queryInTree(0, 0, len(st.data)-1, left, right)
}
return 0
}
// 在以 treeIndex 为根的线段树中 [left...right] 的范围里,搜索区间 [queryLeft...queryRight] 的值
func (st *SegmentTree) queryInTree(treeIndex, left, right, queryLeft, queryRight int) int {
if left == queryLeft && right == queryRight {
return st.tree[treeIndex]
}
midTreeIndex, leftTreeIndex, rightTreeIndex := left+(right-left)>>1, st.leftChild(treeIndex), st.rightChild(treeIndex)
if queryLeft > midTreeIndex {
return st.queryInTree(rightTreeIndex, midTreeIndex+1, right, queryLeft, queryRight)
} else if queryRight <= midTreeIndex {
return st.queryInTree(leftTreeIndex, left, midTreeIndex, queryLeft, queryRight)
}
return st.merge(st.queryInTree(leftTreeIndex, left, midTreeIndex, queryLeft, midTreeIndex),
st.queryInTree(rightTreeIndex, midTreeIndex+1, right, midTreeIndex+1, queryRight))
}
// 查询 [left....right] 区间内的值
// QueryLazy define
func (st *SegmentTree) QueryLazy(left, right int) int {
if len(st.data) > 0 {
return st.queryLazyInTree(0, 0, len(st.data)-1, left, right)
}
return 0
}
func (st *SegmentTree) queryLazyInTree(treeIndex, left, right, queryLeft, queryRight int) int {
midTreeIndex, leftTreeIndex, rightTreeIndex := left+(right-left)>>1, st.leftChild(treeIndex), st.rightChild(treeIndex)
if left > queryRight || right < queryLeft { // segment completely outside range
return 0 // represents a null node
}
if st.lazy[treeIndex] != 0 { // this node is lazy
for i := 0; i < right-left+1; i++ {
st.tree[treeIndex] = st.merge(st.tree[treeIndex], st.lazy[treeIndex])
// st.tree[treeIndex] += (right - left + 1) * st.lazy[treeIndex] // normalize current node by removing lazinesss
}
if left != right { // update lazy[] for children nodes
st.lazy[leftTreeIndex] = st.merge(st.lazy[leftTreeIndex], st.lazy[treeIndex])
st.lazy[rightTreeIndex] = st.merge(st.lazy[rightTreeIndex], st.lazy[treeIndex])
// st.lazy[leftTreeIndex] += st.lazy[treeIndex]
// st.lazy[rightTreeIndex] += st.lazy[treeIndex]
}
st.lazy[treeIndex] = 0 // current node processed. No longer lazy
}
if queryLeft <= left && queryRight >= right { // segment completely inside range
return st.tree[treeIndex]
}
if queryLeft > midTreeIndex {
return st.queryLazyInTree(rightTreeIndex, midTreeIndex+1, right, queryLeft, queryRight)
} else if queryRight <= midTreeIndex {
return st.queryLazyInTree(leftTreeIndex, left, midTreeIndex, queryLeft, queryRight)
}
// merge query results
return st.merge(st.queryLazyInTree(leftTreeIndex, left, midTreeIndex, queryLeft, midTreeIndex),
st.queryLazyInTree(rightTreeIndex, midTreeIndex+1, right, midTreeIndex+1, queryRight))
}
// 更新 index 位置的值
// Update define
func (st *SegmentTree) Update(index, val int) {
if len(st.data) > 0 {
st.updateInTree(0, 0, len(st.data)-1, index, val)
}
}
// 以 treeIndex 为根,更新 index 位置上的值为 val
func (st *SegmentTree) updateInTree(treeIndex, left, right, index, val int) {
if left == right {
st.tree[treeIndex] = val
return
}
midTreeIndex, leftTreeIndex, rightTreeIndex := left+(right-left)>>1, st.leftChild(treeIndex), st.rightChild(treeIndex)
if index > midTreeIndex {
st.updateInTree(rightTreeIndex, midTreeIndex+1, right, index, val)
} else {
st.updateInTree(leftTreeIndex, left, midTreeIndex, index, val)
}
st.tree[treeIndex] = st.merge(st.tree[leftTreeIndex], st.tree[rightTreeIndex])
}
// 更新 [updateLeft....updateRight] 位置的值
// 注意这里的更新值是在原来值的基础上增加或者减少,而不是把这个区间内的值都赋值为 x,区间更新和单点更新不同
// 这里的区间更新关注的是变化,单点更新关注的是定值
// 当然区间更新也可以都更新成定值,如果只区间更新成定值,那么 lazy 更新策略需要变化,merge 策略也需要变化,这里暂不详细讨论
// UpdateLazy define
func (st *SegmentTree) UpdateLazy(updateLeft, updateRight, val int) {
if len(st.data) > 0 {
st.updateLazyInTree(0, 0, len(st.data)-1, updateLeft, updateRight, val)
}
}
func (st *SegmentTree) updateLazyInTree(treeIndex, left, right, updateLeft, updateRight, val int) {
midTreeIndex, leftTreeIndex, rightTreeIndex := left+(right-left)>>1, st.leftChild(treeIndex), st.rightChild(treeIndex)
if st.lazy[treeIndex] != 0 { // this node is lazy
for i := 0; i < right-left+1; i++ {
st.tree[treeIndex] = st.merge(st.tree[treeIndex], st.lazy[treeIndex])
//st.tree[treeIndex] += (right - left + 1) * st.lazy[treeIndex] // normalize current node by removing laziness
}
if left != right { // update lazy[] for children nodes
st.lazy[leftTreeIndex] = st.merge(st.lazy[leftTreeIndex], st.lazy[treeIndex])
st.lazy[rightTreeIndex] = st.merge(st.lazy[rightTreeIndex], st.lazy[treeIndex])
// st.lazy[leftTreeIndex] += st.lazy[treeIndex]
// st.lazy[rightTreeIndex] += st.lazy[treeIndex]
}
st.lazy[treeIndex] = 0 // current node processed. No longer lazy
}
if left > right || left > updateRight || right < updateLeft {
return // out of range. escape.
}
if updateLeft <= left && right <= updateRight { // segment is fully within update range
for i := 0; i < right-left+1; i++ {
st.tree[treeIndex] = st.merge(st.tree[treeIndex], val)
//st.tree[treeIndex] += (right - left + 1) * val // update segment
}
if left != right { // update lazy[] for children
st.lazy[leftTreeIndex] = st.merge(st.lazy[leftTreeIndex], val)
st.lazy[rightTreeIndex] = st.merge(st.lazy[rightTreeIndex], val)
// st.lazy[leftTreeIndex] += val
// st.lazy[rightTreeIndex] += val
}
return
}
st.updateLazyInTree(leftTreeIndex, left, midTreeIndex, updateLeft, updateRight, val)
st.updateLazyInTree(rightTreeIndex, midTreeIndex+1, right, updateLeft, updateRight, val)
// merge updates
st.tree[treeIndex] = st.merge(st.tree[leftTreeIndex], st.tree[rightTreeIndex])
}
// SegmentCountTree define
type SegmentCountTree struct {
data, tree []int
left, right int
merge func(i, j int) int
}
// Init define
func (st *SegmentCountTree) Init(nums []int, oper func(i, j int) int) {
st.merge = oper
data, tree := make([]int, len(nums)), make([]int, 4*len(nums))
for i := 0; i < len(nums); i++ {
data[i] = nums[i]
}
st.data, st.tree = data, tree
}
// 在 treeIndex 的位置创建 [left....right] 区间的线段树
func (st *SegmentCountTree) buildSegmentTree(treeIndex, left, right int) {
if left == right {
st.tree[treeIndex] = st.data[left]
return
}
midTreeIndex, leftTreeIndex, rightTreeIndex := left+(right-left)>>1, st.leftChild(treeIndex), st.rightChild(treeIndex)
st.buildSegmentTree(leftTreeIndex, left, midTreeIndex)
st.buildSegmentTree(rightTreeIndex, midTreeIndex+1, right)
st.tree[treeIndex] = st.merge(st.tree[leftTreeIndex], st.tree[rightTreeIndex])
}
func (st *SegmentCountTree) leftChild(index int) int {
return 2*index + 1
}
func (st *SegmentCountTree) rightChild(index int) int {
return 2*index + 2
}
// 查询 [left....right] 区间内的值
// Query define
func (st *SegmentCountTree) Query(left, right int) int {
if len(st.data) > 0 {
return st.queryInTree(0, 0, len(st.data)-1, left, right)
}
return 0
}
// 在以 treeIndex 为根的线段树中 [left...right] 的范围里,搜索区间 [queryLeft...queryRight] 的值,值是计数值
func (st *SegmentCountTree) queryInTree(treeIndex, left, right, queryLeft, queryRight int) int {
if queryRight < st.data[left] || queryLeft > st.data[right] {
return 0
}
if queryLeft <= st.data[left] && queryRight >= st.data[right] || left == right {
return st.tree[treeIndex]
}
midTreeIndex, leftTreeIndex, rightTreeIndex := left+(right-left)>>1, st.leftChild(treeIndex), st.rightChild(treeIndex)
return st.queryInTree(rightTreeIndex, midTreeIndex+1, right, queryLeft, queryRight) +
st.queryInTree(leftTreeIndex, left, midTreeIndex, queryLeft, queryRight)
}
// 更新计数
// UpdateCount define
func (st *SegmentCountTree) UpdateCount(val int) {
if len(st.data) > 0 {
st.updateCountInTree(0, 0, len(st.data)-1, val)
}
}
// 以 treeIndex 为根,更新 [left...right] 区间内的计数
func (st *SegmentCountTree) updateCountInTree(treeIndex, left, right, val int) {
if val >= st.data[left] && val <= st.data[right] {
st.tree[treeIndex]++
if left == right {
return
}
midTreeIndex, leftTreeIndex, rightTreeIndex := left+(right-left)>>1, st.leftChild(treeIndex), st.rightChild(treeIndex)
st.updateCountInTree(rightTreeIndex, midTreeIndex+1, right, val)
st.updateCountInTree(leftTreeIndex, left, midTreeIndex, val)
}
}