-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
175 lines (134 loc) · 5.67 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, ConcatDataset
import matplotlib.pyplot as plt
from util import *
import cv2
class Dataset(torch.utils.data.Dataset):
def __init__(self, data_dir, mask_dir, transform=None, data_conf='A', use_mask=True):
self.data_conf = data_conf
self.data_dir = data_dir + data_conf
self.mask_dir = mask_dir + data_conf
self.transform = transform
self.use_mask = use_mask
self.to_tensor = ToTensor()
if os.path.exists(self.data_dir):
lst_data = os.listdir(self.data_dir)
lst_data = [f for f in lst_data if f.endswith('jpg') | f.endswith('jpeg') | f.endswith('png')]
lst_data.sort()
lst_mask = os.listdir(self.mask_dir)
lst_mask = [f for f in lst_mask if f.endswith('jpg') | f.endswith('jpeg') | f.endswith('png')]
lst_mask.sort()
else:
lst_data = []
lst_mask = []
self.lst_data = lst_data
self.lst_mask = lst_mask
def __len__(self):
return len(self.lst_data)
# 1 channel
def __getitem__(self, index):
data = {}
input = cv2.imread(os.path.join(self.data_dir, self.lst_data[index]), -1)
data['data'] = input
if self.use_mask:
mask = cv2.imread(os.path.join(self.mask_dir, self.lst_mask[index]), -1)
data['mask'] = mask
if self.transform:
data = self.transform(data)
if self.data_conf == 'A' or self.data_conf == 'B':
data['att_edema'] = np.array(0)
elif self.data_conf == 'C' or self.data_conf == 'D':
data['att_edema'] = np.array(1)
if self.data_conf == 'A' or self.data_conf == 'C':
data['att_artifact'] = np.array(0)
elif self.data_conf == 'B' or self.data_conf == 'D':
data['att_artifact'] = np.array(1)
data = self.to_tensor(data)
return data
## 트렌스폼 구현하기
class ToTensor(object):
def __call__(self, data):
for key, value in data.items():
if key.startswith('att'):
data[key] = torch.from_numpy(value)
else:
value = value[:, :, np.newaxis]
value = value.transpose((2, 0, 1)).astype(np.float32)
data[key] = torch.from_numpy(value)
return data
class Normalization(object):
def __init__(self, mean=0, std=1., v_min=850, v_max=1150):
self.mean = mean
self.std = std
self.v_min = v_min
self.v_max = v_max
def __call__(self, data):
for key, value in data.items():
if key.startswith('data'):
value = np.clip(value, self.v_min, self.v_max)
value = (value - self.v_min) / (self.v_max - self.v_min)
value = (value * 2) - 1
# data[key] = (value - self.mean) / self.std
data[key] = value
else:
data[key] = value
return data
class RandomCrop(object):
def __init__(self, shape):
self.shape = shape
def __call__(self, data):
keys = list(data.keys())
h, w = data[keys[0]].shape[:2]
new_h, new_w = self.shape
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
id_y = np.arange(top, top + new_h, 1)[:, np.newaxis]
id_x = np.arange(left, left + new_w, 1)
for key, value in data.items():
if key.startswith('att'):
data[key] = value
else:
data[key] = value[id_y, id_x]
return data
class Resize(object):
def __init__(self, shape):
self.shape = shape
def __call__(self, data):
for key, value in data.items():
if key.startswith('att'):
data[key] = value
else:
data[key] = cv2.resize(value, (self.shape[0], self.shape[1]))
return data
def get_loader(data_dir, transform, data_conf, use_mask, batch_size, num_workers, type):
if len(data_conf) == 1:
if type == 'train':
dataset = Dataset(os.path.join(data_dir, 'train/train'),
os.path.join(data_dir, 'train/mask'),
transform, data_conf, use_mask)
elif type == 'valid':
dataset = Dataset(os.path.join(data_dir, 'valid/train'),
os.path.join(data_dir, 'valid/mask'),
transform, data_conf, use_mask)
elif len(data_conf) == 2:
if type == 'train':
dataset_a = Dataset(os.path.join(data_dir, 'train/train'),
os.path.join(data_dir, 'train/mask'),
transform, data_conf[0], use_mask)
dataset_b = Dataset(os.path.join(data_dir, 'train/train'),
os.path.join(data_dir, 'train/mask'),
transform, data_conf[1], use_mask)
dataset = ConcatDataset([dataset_a, dataset_b])
elif type == 'valid':
dataset_a = Dataset(os.path.join(data_dir, 'valid/train'),
os.path.join(data_dir, 'valid/mask'),
transform, data_conf[0], use_mask)
dataset_b = Dataset(os.path.join(data_dir, 'valid/train'),
os.path.join(data_dir, 'valid/mask'),
transform, data_conf[1], use_mask)
dataset = ConcatDataset([dataset_a, dataset_b])
loader = DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, drop_last=True)
return loader