Skip to content
/ SLiCE Public

Subgraph Based Learning of Contextual Embedding

License

Notifications You must be signed in to change notification settings

pnnl/SLiCE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

95 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SLiCE

Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks

Dataset details:

Install instructions:

  • Dependencies: Python 3.6, PyTorch 1.4.0 w/ CUDA 9.2, Pytorch Geometric
  • The specific Pytorch Geometric wheels we use are included in the repo for convenience in the 'wheels' directory
conda create -n slice python=3.6
conda activate slice
pip install -r requirements.txt

Training:

python main.py \
    --data_name $dataset \
    --data_path $data_path \
    --outdir $outdir \
    --pretrained_embeddings $pretrained_embeddings \
    --n_epochs $n_pretrain_epochs \
    --n_layers $n_layers \
    --n_heads $n_heads \
    --gcn_option $gcn_option \
    --node_edge_composition_func $node_edge_composition_func \
    --ft_input_option $ft_input_option \
    --path_option $path_option \
    --ft_n_epochs $n_ft_epochs \
    --num_walks_per_node $n_walks_per_node \
    --max_length $max_length \
    --walk_type $walk_type \
    --is_pre_trained

Citation:

Please cite the following paper if you use this code in your work.

@inproceedings{wang2020self,
  title={Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks},
  author={Wang, Ping and Agarwal, Khushbu and Ham, Colby and Choudhury, Sutanay and Reddy, Chandan K},
  booktitle={Proceedings of The Web Conference 2021},
  year={2021}
}

About

Subgraph Based Learning of Contextual Embedding

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published