-
Notifications
You must be signed in to change notification settings - Fork 31
/
qelib1.inc
220 lines (213 loc) · 3.99 KB
/
qelib1.inc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Quantum Experience (QE) Standard Header
// file: qelib1.inc
// --- QE Hardware primitives ---
// 3-parameter 2-pulse single qubit gate
gate u3(theta,phi,lambda) q { U(theta,phi,lambda) q; }
// 2-parameter 1-pulse single qubit gate
gate u2(phi,lambda) q { U(pi/2,phi,lambda) q; }
// 1-parameter 0-pulse single qubit gate
gate u1(lambda) q { U(0,0,lambda) q; }
// controlled-NOT
gate cx c,t { CX c,t; }
// idle gate (identity)
gate id a { U(0,0,0) a; }
// idle gate (identity) with length gamma*sqglen
gate u0(gamma) q { U(0,0,0) q; }
// --- QE Standard Gates ---
// Pauli gate: bit-flip
gate x a { u3(pi,0,pi) a; }
// Pauli gate: bit and phase flip
gate y a { u3(pi,pi/2,pi/2) a; }
// Pauli gate: phase flip
gate z a { u1(pi) a; }
// Clifford gate: Hadamard
gate h a { u2(0,pi) a; }
// Clifford gate: sqrt(Z) phase gate
gate s a { u1(pi/2) a; }
// Clifford gate: conjugate of sqrt(Z)
gate sdg a { u1(-pi/2) a; }
// C3 gate: sqrt(S) phase gate
gate t a { u1(pi/4) a; }
// C3 gate: conjugate of sqrt(S)
gate tdg a { u1(-pi/4) a; }
// --- Standard rotations ---
// Rotation around X-axis
gate rx(theta) a { u3(theta, -pi/2,pi/2) a; }
// rotation around Y-axis
gate ry(theta) a { u3(theta,0,0) a; }
// rotation around Z axis
gate rz(phi) a { u1(phi) a; }
// --- QE Standard User-Defined Gates ---
// controlled-Phase
gate cz a,b { h b; cx a,b; h b; }
// controlled-Y
gate cy a,b { sdg b; cx a,b; s b; }
// swap
gate swap a,b { cx a,b; cx b,a; cx a,b; }
// controlled-H
gate ch a,b {
h b; sdg b;
cx a,b;
h b; t b;
cx a,b;
t b; h b; s b; x b; s a;
}
// C3 gate: Toffoli
gate ccx a,b,c
{
h c;
cx b,c; tdg c;
cx a,c; t c;
cx b,c; tdg c;
cx a,c; t b; t c; h c;
cx a,b; t a; tdg b;
cx a,b;
}
// cswap (Fredkin)
gate cswap a,b,c
{
cx c,b;
ccx a,b,c;
cx c,b;
}
// controlled rx rotation
gate crx(lambda) a,b
{
u1(pi/2) b;
cx a,b;
u3(-lambda/2,0,0) b;
cx a,b;
u3(lambda/2,-pi/2,0) b;
}
// controlled ry rotation
gate cry(lambda) a,b
{
u3(lambda/2,0,0) b;
cx a,b;
u3(-lambda/2,0,0) b;
cx a,b;
}
// controlled rz rotation
gate crz(lambda) a,b
{
u1(lambda/2) b;
cx a,b;
u1(-lambda/2) b;
cx a,b;
}
// controlled phase rotation
gate cu1(lambda) a,b
{
u1(lambda/2) a;
cx a,b;
u1(-lambda/2) b;
cx a,b;
u1(lambda/2) b;
}
// controlled-U
gate cu3(theta,phi,lambda) c, t
{
// implements controlled-U(theta,phi,lambda) with target t and control c
u1((lambda+phi)/2) c;
u1((lambda-phi)/2) t;
cx c,t;
u3(-theta/2,0,-(phi+lambda)/2) t;
cx c,t;
u3(theta/2,phi,0) t;
}
// two-qubit XX rotation
gate rxx(theta) a,b
{
u3(pi/2, theta, 0) a;
h b;
cx a,b;
u1(-theta) b;
cx a,b;
h b;
u2(-pi, pi-theta) a;
}
// two-qubit ZZ rotation
gate rzz(theta) a,b
{
cx a,b;
u1(theta) b;
cx a,b;
}
// relative-phase CCX
gate rccx a,b,c
{
u2(0,pi) c;
u1(pi/4) c;
cx b, c;
u1(-pi/4) c;
cx a, c;
u1(pi/4) c;
cx b, c;
u1(-pi/4) c;
u2(0,pi) c;
}
// relative-phase 3-controlled X gate
gate rc3x a,b,c,d
{
u2(0,pi) d;
u1(pi/4) d;
cx c,d;
u1(-pi/4) d;
u2(0,pi) d;
cx a,d;
u1(pi/4) d;
cx b,d;
u1(-pi/4) d;
cx a,d;
u1(pi/4) d;
cx b,d;
u1(-pi/4) d;
u2(0,pi) d;
u1(pi/4) d;
cx c,d;
u1(-pi/4) d;
u2(0,pi) d;
}
// 3-controlled X gate
gate c3x a,b,c,d
{
h d; cu1(-pi/4) a,d; h d;
cx a,b;
h d; cu1(pi/4) b,d; h d;
cx a,b;
h d; cu1(-pi/4) b,d; h d;
cx b,c;
h d; cu1(pi/4) c,d; h d;
cx a,c;
h d; cu1(-pi/4) c,d; h d;
cx b,c;
h d; cu1(pi/4) c,d; h d;
cx a,c;
h d; cu1(-pi/4) c,d; h d;
}
// 3-controlled sqrt(X) gate, this equals the C3X gate where the CU1 rotations are -pi/8 not -pi/4
gate c3sqrtx a,b,c,d
{
h d; cu1(-pi/8) a,d; h d;
cx a,b;
h d; cu1(pi/8) b,d; h d;
cx a,b;
h d; cu1(-pi/8) b,d; h d;
cx b,c;
h d; cu1(pi/8) c,d; h d;
cx a,c;
h d; cu1(-pi/8) c,d; h d;
cx b,c;
h d; cu1(pi/8) c,d; h d;
cx a,c;
h d; cu1(-pi/8) c,d; h d;
}
// 4-controlled X gate
gate c4x a,b,c,d,e
{
h e; cu1(-pi/2) d,e; h e;
c3x a,b,c,d;
h d; cu1(pi/4) d,e; h d;
c3x a,b,c,d;
c3sqrtx a,b,c,e;
}