-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmakeDefaultParameters.m
56 lines (48 loc) · 1.85 KB
/
makeDefaultParameters.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function para = makeDefaultParameters()
% number of segmentations
% the more number of segmentations, the better performance and slower
% speed
para.num_segmentation = 15;
% trained segment (region) saliency regressor, saliency fusion weight
% model = load( './model/model_MSRA_48s_trn_valid_full_93d_regressor_weight.mat' );
model = load( './model/drfiModelMatlab.mat' );
[sw ind] = sort( model.w, 'descend' );
w = sw(1 : para.num_segmentation );
w = w / sum(w);
para.w = w;
para.ind = ind(1 : para.num_segmentation);
para.seg_para = model.para(para.ind,:);
% newModel = load( './model/saliency_model_cpp.mat');
para.segment_saliency_regressor = model.segment_saliency_regressor;
% saveModel('Model.mat', para);
end
% int _N; // Number of segmentation
% vecD _w; // weights with dimension: N
% Mat _segPara1d; // Segmentation parameters: [Nx3]
% int _NumN; // nrNodes: Number of nodes (41565)
% int _NumT; // number of Tree (200)
% // int Matrix of size [NumN x NumT]
% Mat _lDau1i, _rDau1i, _mBest1i;
% // char matrix of size [NumN x NumT]
% Mat _nodeStatus1c;
% // double matrix of size [NumN x NumT]
% Mat _upper1d, _avNode1d;
% vecI _ndTree; //[NumT]
% Mat _mlFilters15d; // [19 x 19 x 15]
function saveModel(fileName, para)
N = para.num_segmentation;
sr = para.segment_saliency_regressor;
NumN = sr.nrnodes;
NumT = sr.ntree;
w = para.w;
segPara = para.seg_para;
lDau = sr.lDau;
rDau = sr.rDau;
mBest = sr.mbest;
nodeStatus = sr.nodestatus;
upper = sr.upper;
avNode = sr.avnode;
mlFilters = makeLMfilters;
ndTree = sr.ndtree;
save(fileName, 'N', 'NumN', 'NumT', 'w', 'segPara', 'lDau', 'rDau', 'mBest', 'nodeStatus', 'upper', 'avNode', 'mlFilters', 'ndTree');
end