@@ -2071,7 +2071,7 @@ def __init__(self,
2071
2071
conv_ndims: Convolution dimensionality (1, 2 or 3).
2072
2072
input_shape: Shape of the input as int tuple, excluding the batch size.
2073
2073
output_channels: int, number of output channels of the conv LSTM.
2074
- kernel_shape: Shape of kernel as in tuple (of size 1,2 or 3).
2074
+ kernel_shape: Shape of kernel as an int tuple (of size 1, 2 or 3).
2075
2075
use_bias: (bool) Use bias in convolutions.
2076
2076
skip_connection: If set to `True`, concatenate the input to the
2077
2077
output of the conv LSTM. Default: `False`.
@@ -2092,7 +2092,7 @@ def __init__(self,
2092
2092
self ._conv_ndims = conv_ndims
2093
2093
self ._input_shape = input_shape
2094
2094
self ._output_channels = output_channels
2095
- self ._kernel_shape = kernel_shape
2095
+ self ._kernel_shape = list ( kernel_shape )
2096
2096
self ._use_bias = use_bias
2097
2097
self ._forget_bias = forget_bias
2098
2098
self ._skip_connection = skip_connection
@@ -2172,7 +2172,7 @@ def _conv(args, filter_size, num_features, bias, bias_start=0.0):
2172
2172
Args:
2173
2173
args: a Tensor or a list of Tensors of dimension 3D, 4D or 5D,
2174
2174
batch x n, Tensors.
2175
- filter_size: int tuple of filter height and width .
2175
+ filter_size: int tuple of filter shape (of size 1, 2 or 3) .
2176
2176
num_features: int, number of features.
2177
2177
bias: Whether to use biases in the convolution layer.
2178
2178
bias_start: starting value to initialize the bias; 0 by default.
0 commit comments