diff --git a/blueprint/src/chapters/2-case2.tex b/blueprint/src/chapters/2-case2.tex index 292ff92..9cf942f 100644 --- a/blueprint/src/chapters/2-case2.tex +++ b/blueprint/src/chapters/2-case2.tex @@ -250,10 +250,6 @@ \chapter{Case 2} \lean{Solution.two_le_multiplicity} \leanok \uses{def:Solution} - Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ - Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ - Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S=(a, b, c, u)$ be a $solution$ with multiplicity $n$.\\\\ Then $2 \leq n$. \end{lemma} @@ -273,7 +269,6 @@ \chapter{Case 2} Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S'=(a, b, c, u)$ be a $solution'$.\\\\ Then $a^3 + b^3 = (a + b) (a + \eta b) (a + \eta^2 b)$. \end{lemma} @@ -295,7 +290,6 @@ \chapter{Case 2} Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S'=(a, b, c, u)$ be a $solution'$.\\\\ Then $(\lambda^2 \divides a + b) \lor (\lambda^2 \divides a + \eta b) \lor (\lambda^2 \divides a + \eta^2 b)$. @@ -327,10 +321,6 @@ \chapter{Case 2} \lean{ex_dvd_a_add_b} \leanok \uses{def:Solution1} - Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ - Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ - Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\\\ Let $S'=(a, b, c, u)$ be a $solution'$.\\\\ Then $\exists a_1,b_1 \in \cc{O}_k$ such that $S_1=(a_1,b_1,c,u)$ is a $solution$. \end{lemma} @@ -389,7 +379,6 @@ \chapter{Case 2} Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S=(a, b, c, u)$ be a $solution$.\\\\ Then $a + \eta b = (a + b) + \lambda b$. \end{lemma} @@ -409,7 +398,6 @@ \chapter{Case 2} Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S=(a, b, c, u)$ be a $solution$.\\\\ Then $\lambda \divides a + \eta b$. \end{lemma} @@ -430,7 +418,6 @@ \chapter{Case 2} Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S=(a, b, c, u)$ be a $solution$.\\\\ Then $\lambda \divides a + \eta^2 b$. \end{lemma} @@ -452,7 +439,6 @@ \chapter{Case 2} Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S=(a, b, c, u)$ be a $solution$.\\\\ Then $\lambda^2 \notdivides a + \eta b$. \end{lemma} @@ -477,7 +463,6 @@ \chapter{Case 2} Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S=(a, b, c, u)$ be a $solution$.\\\\ Then $\lambda^2 \notdivides a + \eta^2 b$. \end{lemma} @@ -501,7 +486,6 @@ \chapter{Case 2} Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\\\ Let $S=(a, b, c, u)$ be a $solution$.\\\\ Then $(\eta + 1) (-\eta) = 1$. \end{lemma} @@ -522,7 +506,6 @@ \chapter{Case 2} Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\ Let $S=(a, b, c, u)$ be a $solution$.\\ Let $p \in \cc{O}_K$ be a prime such that $p \divides a+b$ and $p \divides a+\eta b$.\\\\ @@ -545,7 +528,6 @@ \chapter{Case 2} Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\\\ Let $S=(a, b, c, u)$ be a $solution$.\\ Let $p \in \cc{O}_K$ be a prime such that $p \divides a+b$ and $p \divides a+\eta^2 b$.\\\\ @@ -568,7 +550,6 @@ \chapter{Case 2} Let $\zeta_3 \in K$ be any primitive third root of unity. \\ Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ - Let $u \in \cc{O}^\times_K$ be a unit. \\\\ Let $S=(a, b, c, u)$ be a $solution$.\\ Let $p \in \cc{O}_K$ be a prime such that $p \divides a+\eta b$ and $p \divides a+\eta^2 b$.\\\\ @@ -585,6 +566,12 @@ \chapter{Case 2} %\lean{} \leanok \uses{def:Solution} + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ Let $S=(a, b, c, u)$ be a $solution$.\\\\ We define $x \in \cc{O}_K$ such that $a + b = \lambda^{3n-2} x$.\\ We define $y \in \cc{O}_K$ such that $a + \eta b = \lambda y$.\\ @@ -597,6 +584,12 @@ \chapter{Case 2} \lean{Solution.lambda_not_dvd_y} \leanok \uses{def:Solution} + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ Let $S$ be a $solution$.\\\\ Then $\lambda \notdivides y$. \end{lemma} @@ -614,6 +607,12 @@ \chapter{Case 2} \lean{Solution.lambda_not_dvd_z} \leanok \uses{def:Solution} + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ Let $S$ be a $solution$.\\\\ Then $\lambda \notdivides z$. \end{lemma} @@ -630,6 +629,12 @@ \chapter{Case 2} \lean{Solution.lambda_pow_dvd_a_add_b} \leanok \uses{def:Solution} + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ Let $S=(a, b, c, u)$ be a $solution$ with multiplicity $n$.\\\\ Then $\lambda^{3n -2} \divides a + b$. \end{lemma} @@ -651,6 +656,12 @@ \chapter{Case 2} \lean{Solution.lambda_not_dvd_w} \leanok \uses{def:Solution} + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ Let $S$ be a $solution$.\\\\ Then $\lambda \notdivides w$. \end{lemma} @@ -667,6 +678,12 @@ \chapter{Case 2} \lean{Solution.lambda_not_dvd_x} \leanok \uses{def:Solution} + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ Let $S$ be a $solution$.\\\\ Then $\lambda \notdivides x$. \end{lemma} @@ -688,7 +705,7 @@ \chapter{Case 2} \label{lmm:coprime_x_y} \lean{Solution.coprime_x_y} \leanok - \uses{def:Solution} + \uses{def:Solution, def:Solution_x_y_z_w} Let $S$ be a $solution$ with multiplicity $n$.\\\\ Then $\gcd(x,y) = 1$. \end{lemma} @@ -710,7 +727,7 @@ \chapter{Case 2} \label{lmm:coprime_x_z} \lean{Solution.coprime_x_z} \leanok - \uses{def:Solution} + \uses{def:Solution, def:Solution_x_y_z_w} Let $S$ be a $solution$.\\\\ Then $\gcd(x,z) = 1$. \end{lemma} @@ -730,7 +747,7 @@ \chapter{Case 2} \begin{lemma} \label{lmm:coprime_y_z} - \lean{Solution.coprime_y_z} + \lean{Solution.coprime_y_z, def:Solution_x_y_z_w} \leanok \uses{def:Solution} Let $S$ be a $solution$.\\\\