From fa596ae673d7a9e023324ba99cea715496d970c7 Mon Sep 17 00:00:00 2001 From: northmorn Date: Wed, 14 Oct 2020 21:46:19 +0800 Subject: [PATCH] Update ch1.md fix broken markdown --- ch1.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ch1.md b/ch1.md index 42555e35..72762008 100644 --- a/ch1.md +++ b/ch1.md @@ -266,7 +266,7 @@ ​ 有些系统是 **弹性(elastic)** 的,这意味着可以在检测到负载增加时自动增加计算资源,而其他系统则是手动扩展(人工分析容量并决定向系统添加更多的机器)。如果负载**极难预测(highly unpredictable)**,则弹性系统可能很有用,但手动扩展系统更简单,并且意外操作可能会更少(参阅“[重新平衡分区](ch6.md#分区再平衡)”)。 -​ 跨多台机器部署**无状态服务(stateless services)**非常简单,但将带状态的数据系统从单节点变为分布式配置则可能引入许多额外复杂度。出于这个原因,常识告诉我们应该将数据库放在单个节点上(纵向扩展),直到扩展成本或可用性需求迫使其改为分布式。 +​ 跨多台机器部署 **无状态服务(stateless services)** 非常简单,但将带状态的数据系统从单节点变为分布式配置则可能引入许多额外复杂度。出于这个原因,常识告诉我们应该将数据库放在单个节点上(纵向扩展),直到扩展成本或可用性需求迫使其改为分布式。 ​ 随着分布式系统的工具和抽象越来越好,至少对于某些类型的应用而言,这种常识可能会改变。可以预见分布式数据系统将成为未来的默认设置,即使对不处理大量数据或流量的场景也如此。本书的其余部分将介绍多种分布式数据系统,不仅讨论它们在可扩展性方面的表现,还包括易用性和可维护性。