forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdropout_theano.py
167 lines (132 loc) · 5.34 KB
/
dropout_theano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# A 1-hidden-layer neural network in Theano.
# This code is not optimized for speed.
# It's just to get something working, using the principles we know.
# For the class Data Science: Practical Deep Learning Concepts in Theano and TensorFlow
# https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow
# https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
import numpy as np
import theano
import theano.tensor as T
import matplotlib.pyplot as plt
from theano.tensor.shared_randomstreams import RandomStreams
from util import get_normalized_data
from sklearn.utils import shuffle
class HiddenLayer(object):
def __init__(self, M1, M2, an_id):
self.id = an_id
self.M1 = M1
self.M2 = M2
W = np.random.randn(M1, M2) / np.sqrt(M1)
b = np.zeros(M2)
self.W = theano.shared(W, 'W_%s' % self.id)
self.b = theano.shared(b, 'b_%s' % self.id)
self.params = [self.W, self.b]
def forward(self, X):
return T.nnet.relu(X.dot(self.W) + self.b)
class ANN(object):
def __init__(self, hidden_layer_sizes, p_keep):
self.hidden_layer_sizes = hidden_layer_sizes
self.dropout_rates = p_keep
def fit(self, X, Y, learning_rate=1e-6, mu=0.99, decay=0.999, epochs=300, batch_sz=100, show_fig=False):
# make a validation set
X, Y = shuffle(X, Y)
X = X.astype(np.float32)
Y = Y.astype(np.int32)
Xvalid, Yvalid = X[-1000:], Y[-1000:]
X, Y = X[:-1000], Y[:-1000]
self.rng = RandomStreams()
# initialize hidden layers
N, D = X.shape
K = len(set(Y))
self.hidden_layers = []
M1 = D
count = 0
for M2 in self.hidden_layer_sizes:
h = HiddenLayer(M1, M2, count)
self.hidden_layers.append(h)
M1 = M2
count += 1
W = np.random.randn(M1, K) / np.sqrt(M1)
b = np.zeros(K)
self.W = theano.shared(W, 'W_logreg')
self.b = theano.shared(b, 'b_logreg')
# collect params for later use
self.params = [self.W, self.b]
for h in self.hidden_layers:
self.params += h.params
# for momentum
dparams = [theano.shared(np.zeros(p.get_value().shape)) for p in self.params]
# for rmsprop
cache = [theano.shared(np.zeros(p.get_value().shape)) for p in self.params]
# set up theano functions and variables
thX = T.matrix('X')
thY = T.ivector('Y')
pY_train = self.forward_train(thX)
# this cost is for training
cost = -T.mean(T.log(pY_train[T.arange(thY.shape[0]), thY]))
updates = [
(c, decay*c + (1-decay)*T.grad(cost, p)*T.grad(cost, p)) for p, c in zip(self.params, cache)
] + [
(p, p + mu*dp - learning_rate*T.grad(cost, p)/T.sqrt(c + 1e-10)) for p, c, dp in zip(self.params, cache, dparams)
] + [
(dp, mu*dp - learning_rate*T.grad(cost, p)/T.sqrt(c + 1e-10)) for p, c, dp in zip(self.params, cache, dparams)
]
# momentum only
# updates = [
# (p, p + mu*dp - learning_rate*T.grad(cost, p)) for p, dp in zip(self.params, dparams)
# ] + [
# (dp, mu*dp - learning_rate*T.grad(cost, p)) for p, dp in zip(self.params, dparams)
# ]
train_op = theano.function(
inputs=[thX, thY],
updates=updates
)
# for evaluation and prediction
pY_predict = self.forward_predict(thX)
cost_predict = -T.mean(T.log(pY_predict[T.arange(thY.shape[0]), thY]))
prediction = self.predict(thX)
cost_predict_op = theano.function(inputs=[thX, thY], outputs=[cost_predict, prediction])
n_batches = N / batch_sz
costs = []
for i in xrange(epochs):
X, Y = shuffle(X, Y)
for j in xrange(n_batches):
Xbatch = X[j*batch_sz:(j*batch_sz+batch_sz)]
Ybatch = Y[j*batch_sz:(j*batch_sz+batch_sz)]
train_op(Xbatch, Ybatch)
if j % 20 == 0:
c, p = cost_predict_op(Xvalid, Yvalid)
costs.append(c)
e = error_rate(Yvalid, p)
print "i:", i, "j:", j, "nb:", n_batches, "cost:", c, "error rate:", e
if show_fig:
plt.plot(costs)
plt.show()
def forward_train(self, X):
Z = X
for h, p in zip(self.hidden_layers, self.dropout_rates[:-1]):
mask = self.rng.binomial(n=1, p=p, size=Z.shape)
Z = mask * Z
Z = h.forward(Z)
mask = self.rng.binomial(n=1, p=self.dropout_rates[-1], size=Z.shape)
Z = mask * Z
return T.nnet.softmax(Z.dot(self.W) + self.b)
def forward_predict(self, X):
Z = X
for h, p in zip(self.hidden_layers, self.dropout_rates[:-1]):
Z = h.forward(p * Z)
return T.nnet.softmax((self.dropout_rates[-1] * Z).dot(self.W) + self.b)
def predict(self, X):
pY = self.forward_predict(X)
return T.argmax(pY, axis=1)
def error_rate(p, t):
return np.mean(p != t)
def relu(a):
return a * (a > 0)
def main():
# step 1: get the data and define all the usual variables
X, Y = get_normalized_data()
ann = ANN([500, 300], [0.8, 0.5, 0.5])
ann.fit(X, Y, show_fig=True)
if __name__ == '__main__':
main()