-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample2.py
40 lines (31 loc) · 1.24 KB
/
example2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import common.input as input
import algorithm.geometric.coreset as agc
import common.utils as utils
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
data = input.parse_txt("dataset/s-set/s3.txt")
opt = input.parse_txt("dataset/s-set/s3-label.pa")
centers = input.parse_txt("dataset/s-set/s3-cb.txt")
#Computing geometric decomposition coreset
geo = agc.GeometricDecomposition(data, 5000, 15, 0.5)
coreset = geo.compute()
@utils.timeit
def test_no_coreset():
kmeans = KMeans(n_clusters=15, random_state = 0).fit(X=data)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1])
cost = utils.cost_function(data, kmeans.labels_, kmeans.cluster_centers_)
return cost
@utils.timeit
def test_coreset():
kmeans = KMeans(n_clusters=15, random_state = 0).fit(X=coreset)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1])
cost = utils.cost_function(data, kmeans.predict(X=data), kmeans.cluster_centers_)
return cost
cost = test_no_coreset()
cost_cs = test_coreset()
cost_opt = utils.cost_function(data, opt, centers)
print("cost no coreset ", cost)
print("cost coreset ", cost_cs)
print("coreset improvment: {:.1%} ".format(np.abs(cost-cost_cs)/cost))
#plt.show()