forked from beetbox/beets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabsubmit.py
225 lines (198 loc) · 7.59 KB
/
absubmit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# This file is part of beets.
# Copyright 2016, Pieter Mulder.
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
"""Calculate acoustic information and submit to AcousticBrainz."""
import errno
import hashlib
import json
import os
import subprocess
import tempfile
from distutils.spawn import find_executable
import requests
from beets import plugins, ui, util
# We use this field to check whether AcousticBrainz info is present.
PROBE_FIELD = "mood_acoustic"
class ABSubmitError(Exception):
"""Raised when failing to analyse file with extractor."""
def call(args):
"""Execute the command and return its output.
Raise a AnalysisABSubmitError on failure.
"""
try:
return util.command_output(args).stdout
except subprocess.CalledProcessError as e:
raise ABSubmitError(
"{} exited with status {}".format(args[0], e.returncode)
)
class AcousticBrainzSubmitPlugin(plugins.BeetsPlugin):
def __init__(self):
super().__init__()
self._log.warning("This plugin is deprecated.")
self.config.add(
{"extractor": "", "force": False, "pretend": False, "base_url": ""}
)
self.extractor = self.config["extractor"].as_str()
if self.extractor:
self.extractor = util.normpath(self.extractor)
# Explicit path to extractor
if not os.path.isfile(self.extractor):
raise ui.UserError(
"Extractor command does not exist: {0}.".format(
self.extractor
)
)
else:
# Implicit path to extractor, search for it in path
self.extractor = "streaming_extractor_music"
try:
call([self.extractor])
except OSError:
raise ui.UserError(
"No extractor command found: please install the extractor"
" binary from https://essentia.upf.edu/"
)
except ABSubmitError:
# Extractor found, will exit with an error if not called with
# the correct amount of arguments.
pass
# Get the executable location on the system, which we need
# to calculate the SHA-1 hash.
self.extractor = find_executable(self.extractor)
# Calculate extractor hash.
self.extractor_sha = hashlib.sha1()
with open(self.extractor, "rb") as extractor:
self.extractor_sha.update(extractor.read())
self.extractor_sha = self.extractor_sha.hexdigest()
self.url = ""
base_url = self.config["base_url"].as_str()
if base_url:
if not base_url.startswith("http"):
raise ui.UserError(
"AcousticBrainz server base URL must start "
"with an HTTP scheme"
)
elif base_url[-1] != "/":
base_url = base_url + "/"
self.url = base_url + "{mbid}/low-level"
def commands(self):
cmd = ui.Subcommand(
"absubmit", help="calculate and submit AcousticBrainz analysis"
)
cmd.parser.add_option(
"-f",
"--force",
dest="force_refetch",
action="store_true",
default=False,
help="re-download data when already present",
)
cmd.parser.add_option(
"-p",
"--pretend",
dest="pretend_fetch",
action="store_true",
default=False,
help="pretend to perform action, but show \
only files which would be processed",
)
cmd.func = self.command
return [cmd]
def command(self, lib, opts, args):
if not self.url:
raise ui.UserError(
"This plugin is deprecated since AcousticBrainz no longer "
"accepts new submissions. See the base_url configuration "
"option."
)
else:
# Get items from arguments
items = lib.items(ui.decargs(args))
self.opts = opts
util.par_map(self.analyze_submit, items)
def analyze_submit(self, item):
analysis = self._get_analysis(item)
if analysis:
self._submit_data(item, analysis)
def _get_analysis(self, item):
mbid = item["mb_trackid"]
# Avoid re-analyzing files that already have AB data.
if not self.opts.force_refetch and not self.config["force"]:
if item.get(PROBE_FIELD):
return None
# If file has no MBID, skip it.
if not mbid:
self._log.info(
"Not analysing {}, missing " "musicbrainz track id.", item
)
return None
if self.opts.pretend_fetch or self.config["pretend"]:
self._log.info("pretend action - extract item: {}", item)
return None
# Temporary file to save extractor output to, extractor only works
# if an output file is given. Here we use a temporary file to copy
# the data into a python object and then remove the file from the
# system.
tmp_file, filename = tempfile.mkstemp(suffix=".json")
try:
# Close the file, so the extractor can overwrite it.
os.close(tmp_file)
try:
call([self.extractor, util.syspath(item.path), filename])
except ABSubmitError as e:
self._log.warning(
"Failed to analyse {item} for AcousticBrainz: {error}",
item=item,
error=e,
)
return None
with open(filename) as tmp_file:
analysis = json.load(tmp_file)
# Add the hash to the output.
analysis["metadata"]["version"]["essentia_build_sha"] = (
self.extractor_sha
)
return analysis
finally:
try:
os.remove(filename)
except OSError as e:
# ENOENT means file does not exist, just ignore this error.
if e.errno != errno.ENOENT:
raise
def _submit_data(self, item, data):
mbid = item["mb_trackid"]
headers = {"Content-Type": "application/json"}
response = requests.post(
self.url.format(mbid=mbid),
json=data,
headers=headers,
timeout=10,
)
# Test that request was successful and raise an error on failure.
if response.status_code != 200:
try:
message = response.json()["message"]
except (ValueError, KeyError) as e:
message = f"unable to get error message: {e}"
self._log.error(
"Failed to submit AcousticBrainz analysis of {item}: "
"{message}).",
item=item,
message=message,
)
else:
self._log.debug(
"Successfully submitted AcousticBrainz analysis " "for {}.",
item,
)