-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmodels.py
241 lines (181 loc) · 6.72 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
def compute_pad(stride, k, s):
if s % stride == 0:
return max(k - stride, 0)
else:
return max(k - (s % stride), 0)
class TSF(nn.Module):
def __init__(self, N=3, mx=False):
super(TSF, self).__init__()
self.N = float(N)
self.Ni = int(N)
self.mx = mx
# create parameteres for center and delta of this super event
self.center = nn.Parameter(torch.FloatTensor(N))
self.delta = nn.Parameter(torch.FloatTensor(N))
self.gamma = nn.Parameter(torch.FloatTensor(N))
# init them around 0
#self.center.data = torch.FloatTensor([-0.7, 0., 0.8])
#self.gamma.data = torch.FloatTensor([0.00001, 0.2, 0.05])
self.center.data.normal_(0,0.5)
self.delta.data.normal_(0,0.01)
self.gamma.data.normal_(0, 0.0001)
def get_filters(self, delta, gamma, center, length, time):
"""
delta (batch,) in [-1, 1]
center (batch,) in [-1, 1]
gamma (batch,) in [-1, 1]
length (batch,) of ints
"""
# scale to length of videos
centers = (length - 1) * (center + 1) / 2.0
deltas = length * (1.0 - torch.abs(delta))
gammas = torch.exp(1.5 - 2.0 * torch.abs(gamma))
a = Variable(torch.zeros(self.Ni))
a = a.cuda()
# stride and center
a = deltas[:, None] * a[None, :]
a = centers[:, None] + a
b = Variable(torch.arange(0, time))
b = b.cuda()
f = b - a[:, :, None]
f = f / gammas[:, None, None]
f = f ** 2.0
f += 1.0
f = np.pi * gammas[:, None, None] * f
f = 1.0/f
f = f/(torch.sum(f, dim=2) + 1e-6)[:,:,None]
f = f[:,0,:].contiguous()
f = f.view(-1, self.Ni, time)
#f = f.data.cpu().numpy()
return f
def forward(self, inp):
video, length = inp
batch, channels, time = video.squeeze(3).squeeze(3).size()
# vid is (B x C x T)
vid = video.view(batch*channels, time, 1).unsqueeze(2)
# f is (B x T x N)
f = self.get_filters(torch.tanh(self.delta).repeat(batch), torch.tanh(self.gamma).repeat(batch), torch.tanh(self.center.repeat(batch)), length.view(batch,1).repeat(1,self.Ni).view(-1), time)
# repeat over channels
f = f.unsqueeze(1).repeat(1, channels, 1, 1)
f = f.view(batch*channels, self.Ni, time)
# o is (B x C x N)
o = torch.bmm(f, vid.squeeze(2))
del f
del vid
o = o.view(batch, channels, self.Ni).unsqueeze(3).unsqueeze(3)
# return (B x C(*N=1 max-pooled) x 1 x 1 x 1)
if self.mx:
return torch.max(o.view(-1, channels, self.Ni, 1), dim=2)[0]
return o.view(-1, channels*self.Ni, 1)
class SubConv(TSF):
"""
Subevents as temporal conv
"""
def __init__(self, inp, num_f, length):
super(SubConv, self).__init__(num_f)
self.inp = inp
self.length = length
def forward(self, x):
# overwrite the forward pass to get the TSF as conv kernels
t = x.size(2)
k = super(SubConv, self).get_filters(torch.tanh(self.delta), torch.tanh(self.gamma), torch.tanh(self.center), self.length, self.length)
k = k.squeeze().unsqueeze(1).unsqueeze(1)#.repeat(1, 1, self.inp, 1)
p = compute_pad(1, self.length, t)
pad_f = p // 2
pad_b = p - pad_f
x = F.pad(x, (pad_f, pad_b)).unsqueeze(1)
return F.conv2d(x, k).squeeze(1)
class ContSubConv(nn.Module):
def __init__(self, inp, num_f, length, classes):
super(ContSubConv, self).__init__()
self.sub_event = SubConv(inp, num_f, length)
self.classify = nn.Conv1d(num_f*inp, classes, 1)
self.dropout = nn.Dropout()
self.inp = inp
self.num_f = num_f
self.classes = classes
def forward(self, inp):
val = False
dim = 1
f = inp[0].squeeze()
if inp[0].size()[0] == 1:
val = True
dim = 0
f = f.unsqueeze(0)
sub_event = self.dropout(self.sub_event(f)).view(-1, self.num_f*self.inp, f.size(2))
cls = F.relu(sub_event)
return self.classify(cls)
class TConv(nn.Module):
def __init__(self, inp, classes):
super(TConv, self).__init__()
self.tconv = nn.Conv1d(inp, 512, 5, padding=2)
self.cls = nn.Conv1d(512, classes, 1)
def forward(self, x, lens):
if x.size(0) == 1:
x = x.squeeze().unsqueeze(0)
else:
x = x.squeeze()
t = x.size(2)
if t < 10:
pad = (10-t+1)//2
x = F.pad(x, (pad, pad))
x = self.tconv(x)
#lens = lens.view(-1,1,1).expand(-1,512,1)
#x = (torch.max(x, dim=2)[0].unsqueeze(2))#/lens)
x = self.cls(x)
return x
class Pyramid(nn.Module):
def __init__(self, inp, classes):
super(Pyramid, self).__init__()
self.mp1 = nn.MaxPool1d(3,1,1)
self.mp2 = nn.MaxPool1d(5,1,2)
self.mp3 = nn.MaxPool1d(7,1,3)
self.tconv = nn.Conv1d(3*inp, 512, 5, padding=2)
self.cls = nn.Conv1d(512, classes, 1)
def forward(self, x, lens):
if x.size(0) == 1:
x = x.squeeze().unsqueeze(0)
else:
x = x.squeeze()
t = x.size(2)
r1 = self.mp1(x)
r2 = self.mp2(x)
r3 = self.mp3(x)
x = torch.cat([r1[:,:1],r1[:,1:],r2[:,:1],r2[:,1:],r3[:,:1],r3[:,1:]], dim=1)
x = self.tconv(x)
#lens = lens.view(-1,1,1).expand(-1,512,1)
#x = (torch.max(x, dim=2)[0].unsqueeze(2))#/lens)
x = self.cls(x)
return x
def baseline(inp=1024, classes=1):
model = nn.Sequential(nn.Dropout(0.5),
nn.Conv3d(inp, classes, (1,1,1)))
return model
def sub_event(inp=1024, classes=1):
model = nn.Sequential(TSF(N=8),
nn.Dropout(0.5),
nn.Conv1d(inp*8, 512, 1),
nn.ReLU(),
nn.Conv1d(512, classes, 1))
return model
def cont_sub_event(inp=1024, classes=8):
model = ContSubConv(inp, 8, 5, classes)
return model
def tconv(inp=1024, classes=1):
model = TConv(inp, classes)
return model
def max_pool(inp, classes):
model = nn.Sequential(nn.MaxPool1d(5,1,2),
nn.Conv1d(inp, classes, 1))
return model
def pyramid(inp, classes):
model = Pyramid(inp, classes)
return model