This repository has been archived by the owner on Feb 19, 2021. It is now read-only.
forked from Yasushi/putty
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmkicon.py
executable file
·1093 lines (955 loc) · 36.1 KB
/
mkicon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
import math
# Python code which draws the PuTTY icon components at a range of
# sizes.
# TODO
# ----
#
# - use of alpha blending
# + try for variable-transparency borders
#
# - can we integrate the Mac icons into all this? Do we want to?
def pixel(x, y, colour, canvas):
canvas[(int(x),int(y))] = colour
def overlay(src, x, y, dst):
x = int(x)
y = int(y)
for (sx, sy), colour in src.items():
dst[sx+x, sy+y] = blend(colour, dst.get((sx+x, sy+y), cT))
def finalise(canvas):
for k in canvas.keys():
canvas[k] = finalisepix(canvas[k])
def bbox(canvas):
minx, miny, maxx, maxy = None, None, None, None
for (x, y) in canvas.keys():
if minx == None:
minx, miny, maxx, maxy = x, y, x+1, y+1
else:
minx = min(minx, x)
miny = min(miny, y)
maxx = max(maxx, x+1)
maxy = max(maxy, y+1)
return (minx, miny, maxx, maxy)
def topy(canvas):
miny = {}
for (x, y) in canvas.keys():
miny[x] = min(miny.get(x, y), y)
return miny
def render(canvas, minx, miny, maxx, maxy):
w = maxx - minx
h = maxy - miny
ret = []
for y in range(h):
ret.append([outpix(cT)] * w)
for (x, y), colour in canvas.items():
if x >= minx and x < maxx and y >= miny and y < maxy:
ret[y-miny][x-minx] = outpix(colour)
return ret
# Code to actually draw pieces of icon. These don't generally worry
# about positioning within a canvas; they just draw at a standard
# location, return some useful coordinates, and leave composition
# to other pieces of code.
sqrthash = {}
def memoisedsqrt(x):
if not sqrthash.has_key(x):
sqrthash[x] = math.sqrt(x)
return sqrthash[x]
BR, TR, BL, TL = range(4) # enumeration of quadrants for border()
def border(canvas, thickness, squarecorners, out={}):
# I haven't yet worked out exactly how to do borders in a
# properly alpha-blended fashion.
#
# When you have two shades of dark available (half-dark H and
# full-dark F), the right sequence of circular border sections
# around a pixel x starts off with these two layouts:
#
# H F
# HxH FxF
# H F
#
# Where it goes after that I'm not entirely sure, but I'm
# absolutely sure those are the right places to start. However,
# every automated algorithm I've tried has always started off
# with the two layouts
#
# H HHH
# HxH HxH
# H HHH
#
# which looks much worse. This is true whether you do
# pixel-centre sampling (define an inner circle and an outer
# circle with radii differing by 1, set any pixel whose centre
# is inside the inner circle to F, any pixel whose centre is
# outside the outer one to nothing, interpolate between the two
# and round sensibly), _or_ whether you plot a notional circle
# of a given radius and measure the actual _proportion_ of each
# pixel square taken up by it.
#
# It's not clear what I should be doing to prevent this. One
# option is to attempt error-diffusion: Ian Jackson proved on
# paper that if you round each pixel's ideal value to the
# nearest of the available output values, then measure the
# error at each pixel, propagate that error outwards into the
# original values of the surrounding pixels, and re-round
# everything, you do get the correct second stage. However, I
# haven't tried it at a proper range of radii.
#
# Another option is that the automated mechanisms described
# above would be entirely adequate if it weren't for the fact
# that the human visual centres are adapted to detect
# horizontal and vertical lines in particular, so the only
# place you have to behave a bit differently is at the ends of
# the top and bottom row of pixels in the circle, and the top
# and bottom of the extreme columns.
#
# For the moment, what I have below is a very simple mechanism
# which always uses only one alpha level for any given border
# thickness, and which seems to work well enough for Windows
# 16-colour icons. Everything else will have to wait.
thickness = memoisedsqrt(thickness)
if thickness < 0.9:
darkness = 0.5
else:
darkness = 1
if thickness < 1: thickness = 1
thickness = round(thickness - 0.5) + 0.3
out["borderthickness"] = thickness
dmax = int(round(thickness))
if dmax < thickness: dmax = dmax + 1
cquadrant = [[0] * (dmax+1) for x in range(dmax+1)]
squadrant = [[0] * (dmax+1) for x in range(dmax+1)]
for x in range(dmax+1):
for y in range(dmax+1):
if max(x, y) < thickness:
squadrant[x][y] = darkness
if memoisedsqrt(x*x+y*y) < thickness:
cquadrant[x][y] = darkness
bvalues = {}
for (x, y), colour in canvas.items():
for dx in range(-dmax, dmax+1):
for dy in range(-dmax, dmax+1):
quadrant = 2 * (dx < 0) + (dy < 0)
if (x, y, quadrant) in squarecorners:
bval = squadrant[abs(dx)][abs(dy)]
else:
bval = cquadrant[abs(dx)][abs(dy)]
if bvalues.get((x+dx,y+dy),0) < bval:
bvalues[(x+dx,y+dy)] = bval
for (x, y), value in bvalues.items():
if not canvas.has_key((x,y)):
canvas[(x,y)] = dark(value)
def sysbox(size, out={}):
canvas = {}
# The system box of the computer.
height = int(round(3.6*size))
width = int(round(16.51*size))
depth = int(round(2*size))
highlight = int(round(1*size))
bothighlight = int(round(1*size))
out["sysboxheight"] = height
floppystart = int(round(19*size)) # measured in half-pixels
floppyend = int(round(29*size)) # measured in half-pixels
floppybottom = height - bothighlight
floppyrheight = 0.7 * size
floppyheight = int(round(floppyrheight))
if floppyheight < 1:
floppyheight = 1
floppytop = floppybottom - floppyheight
# The front panel is rectangular.
for x in range(width):
for y in range(height):
grey = 3
if x < highlight or y < highlight:
grey = grey + 1
if x >= width-highlight or y >= height-bothighlight:
grey = grey - 1
if y < highlight and x >= width-highlight:
v = (highlight-1-y) - (x-(width-highlight))
if v < 0:
grey = grey - 1
elif v > 0:
grey = grey + 1
if y >= floppytop and y < floppybottom and \
2*x+2 > floppystart and 2*x < floppyend:
if 2*x >= floppystart and 2*x+2 <= floppyend and \
floppyrheight >= 0.7:
grey = 0
else:
grey = 2
pixel(x, y, greypix(grey/4.0), canvas)
# The side panel is a parallelogram.
for x in range(depth):
for y in range(height):
pixel(x+width, y-(x+1), greypix(0.5), canvas)
# The top panel is another parallelogram.
for x in range(width-1):
for y in range(depth):
grey = 3
if x >= width-1 - highlight:
grey = grey + 1
pixel(x+(y+1), -(y+1), greypix(grey/4.0), canvas)
# And draw a border.
border(canvas, size, [], out)
return canvas
def monitor(size):
canvas = {}
# The computer's monitor.
height = int(round(9.55*size))
width = int(round(11.49*size))
surround = int(round(1*size))
botsurround = int(round(2*size))
sheight = height - surround - botsurround
swidth = width - 2*surround
depth = int(round(2*size))
highlight = int(round(math.sqrt(size)))
shadow = int(round(0.55*size))
# The front panel is rectangular.
for x in range(width):
for y in range(height):
if x >= surround and y >= surround and \
x < surround+swidth and y < surround+sheight:
# Screen.
sx = (float(x-surround) - swidth/3) / swidth
sy = (float(y-surround) - sheight/3) / sheight
shighlight = 1.0 - (sx*sx+sy*sy)*0.27
pix = bluepix(shighlight)
if x < surround+shadow or y < surround+shadow:
pix = blend(cD, pix) # sharp-edged shadow on top and left
else:
# Complicated double bevel on the screen surround.
# First, the outer bevel. We compute the distance
# from this pixel to each edge of the front
# rectangle.
list = [
(x, +1),
(y, +1),
(width-1-x, -1),
(height-1-y, -1)
]
# Now sort the list to find the distance to the
# _nearest_ edge, or the two joint nearest.
list.sort()
# If there's one nearest edge, that determines our
# bevel colour. If there are two joint nearest, our
# bevel colour is their shared one if they agree,
# and neutral otherwise.
outerbevel = 0
if list[0][0] < list[1][0] or list[0][1] == list[1][1]:
if list[0][0] < highlight:
outerbevel = list[0][1]
# Now, the inner bevel. We compute the distance
# from this pixel to each edge of the screen
# itself.
list = [
(surround-1-x, -1),
(surround-1-y, -1),
(x-(surround+swidth), +1),
(y-(surround+sheight), +1)
]
# Now we sort to find the _maximum_ distance, which
# conveniently ignores any less than zero.
list.sort()
# And now the strategy is pretty much the same as
# above, only we're working from the opposite end
# of the list.
innerbevel = 0
if list[-1][0] > list[-2][0] or list[-1][1] == list[-2][1]:
if list[-1][0] >= 0 and list[-1][0] < highlight:
innerbevel = list[-1][1]
# Now we know the adjustment we want to make to the
# pixel's overall grey shade due to the outer
# bevel, and due to the inner one. We break a tie
# in favour of a light outer bevel, but otherwise
# add.
grey = 3
if outerbevel > 0 or outerbevel == innerbevel:
innerbevel = 0
grey = grey + outerbevel + innerbevel
pix = greypix(grey / 4.0)
pixel(x, y, pix, canvas)
# The side panel is a parallelogram.
for x in range(depth):
for y in range(height):
pixel(x+width, y-x, greypix(0.5), canvas)
# The top panel is another parallelogram.
for x in range(width):
for y in range(depth-1):
pixel(x+(y+1), -(y+1), greypix(0.75), canvas)
# And draw a border.
border(canvas, size, [(0,int(height-1),BL)])
return canvas
def computer(size):
# Monitor plus sysbox.
out = {}
m = monitor(size)
s = sysbox(size, out)
x = int(round((2+size/(size+1))*size))
y = int(out["sysboxheight"] + out["borderthickness"])
mb = bbox(m)
sb = bbox(s)
xoff = sb[0] - mb[0] + x
yoff = sb[3] - mb[3] - y
overlay(m, xoff, yoff, s)
return s
def lightning(size):
canvas = {}
# The lightning bolt motif.
# We always want this to be an even number of pixels in height,
# and an odd number in width.
width = round(7*size) * 2 - 1
height = round(8*size) * 2
# The outer edge of each side of the bolt goes to this point.
outery = round(8.4*size)
outerx = round(11*size)
# And the inner edge goes to this point.
innery = height - 1 - outery
innerx = round(7*size)
for y in range(int(height)):
list = []
if y <= outery:
list.append(width-1-int(outerx * float(y) / outery + 0.3))
if y <= innery:
list.append(width-1-int(innerx * float(y) / innery + 0.3))
y0 = height-1-y
if y0 <= outery:
list.append(int(outerx * float(y0) / outery + 0.3))
if y0 <= innery:
list.append(int(innerx * float(y0) / innery + 0.3))
list.sort()
for x in range(int(list[0]), int(list[-1]+1)):
pixel(x, y, cY, canvas)
# And draw a border.
border(canvas, size, [(int(width-1),0,TR), (0,int(height-1),BL)])
return canvas
def document(size):
canvas = {}
# The document used in the PSCP/PSFTP icon.
width = round(13*size)
height = round(16*size)
lineht = round(1*size)
if lineht < 1: lineht = 1
linespc = round(0.7*size)
if linespc < 1: linespc = 1
nlines = int((height-linespc)/(lineht+linespc))
height = nlines*(lineht+linespc)+linespc # round this so it fits better
# Start by drawing a big white rectangle.
for y in range(int(height)):
for x in range(int(width)):
pixel(x, y, cW, canvas)
# Now draw lines of text.
for line in range(nlines):
# Decide where this line of text begins.
if line == 0:
start = round(4*size)
elif line < 5*nlines/7:
start = round((line - (nlines/7)) * size)
else:
start = round(1*size)
if start < round(1*size):
start = round(1*size)
# Decide where it ends.
endpoints = [10, 8, 11, 6, 5, 7, 5]
ey = line * 6.0 / (nlines-1)
eyf = math.floor(ey)
eyc = math.ceil(ey)
exf = endpoints[int(eyf)]
exc = endpoints[int(eyc)]
if eyf == eyc:
end = exf
else:
end = exf * (eyc-ey) + exc * (ey-eyf)
end = round(end * size)
liney = height - (lineht+linespc) * (line+1)
for x in range(int(start), int(end)):
for y in range(int(lineht)):
pixel(x, y+liney, cK, canvas)
# And draw a border.
border(canvas, size, \
[(0,0,TL),(int(width-1),0,TR),(0,int(height-1),BL), \
(int(width-1),int(height-1),BR)])
return canvas
def hat(size):
canvas = {}
# The secret-agent hat in the Pageant icon.
topa = [6]*9+[5,3,1,0,0,1,2,2,1,1,1,9,9,10,10,11,11,12,12]
topa = [round(x*size) for x in topa]
botl = round(topa[0]+2.4*math.sqrt(size))
botr = round(topa[-1]+2.4*math.sqrt(size))
width = round(len(topa)*size)
# Line equations for the top and bottom of the hat brim, in the
# form y=mx+c. c, of course, needs scaling by size, but m is
# independent of size.
brimm = 1.0 / 3.75
brimtopc = round(4*size/3)
brimbotc = round(10*size/3)
for x in range(int(width)):
xs = float(x) * (len(topa)-1) / (width-1)
xf = math.floor(xs)
xc = math.ceil(xs)
topf = topa[int(xf)]
topc = topa[int(xc)]
if xf == xc:
top = topf
else:
top = topf * (xc-xs) + topc * (xs-xf)
top = math.floor(top)
bot = round(botl + (botr-botl) * x/(width-1))
for y in range(int(top), int(bot)):
pixel(x, y, cK, canvas)
# Now draw the brim.
for x in range(int(width)):
brimtop = brimtopc + brimm * x
brimbot = brimbotc + brimm * x
for y in range(int(math.floor(brimtop)), int(math.ceil(brimbot))):
tophere = max(min(brimtop - y, 1), 0)
bothere = max(min(brimbot - y, 1), 0)
grey = bothere - tophere
# Only draw brim pixels over pixels which are (a) part
# of the main hat, and (b) not right on its edge.
if canvas.has_key((x,y)) and \
canvas.has_key((x,y-1)) and \
canvas.has_key((x,y+1)) and \
canvas.has_key((x-1,y)) and \
canvas.has_key((x+1,y)):
pixel(x, y, greypix(grey), canvas)
return canvas
def key(size):
canvas = {}
# The key in the PuTTYgen icon.
keyheadw = round(9.5*size)
keyheadh = round(12*size)
keyholed = round(4*size)
keyholeoff = round(2*size)
# Ensure keyheadh and keyshafth have the same parity.
keyshafth = round((2*size - (int(keyheadh)&1)) / 2) * 2 + (int(keyheadh)&1)
keyshaftw = round(18.5*size)
keyhead = [round(x*size) for x in [12,11,8,10,9,8,11,12]]
squarepix = []
# Ellipse for the key head, minus an off-centre circular hole.
for y in range(int(keyheadh)):
dy = (y-(keyheadh-1)/2.0) / (keyheadh/2.0)
dyh = (y-(keyheadh-1)/2.0) / (keyholed/2.0)
for x in range(int(keyheadw)):
dx = (x-(keyheadw-1)/2.0) / (keyheadw/2.0)
dxh = (x-(keyheadw-1)/2.0-keyholeoff) / (keyholed/2.0)
if dy*dy+dx*dx <= 1 and dyh*dyh+dxh*dxh > 1:
pixel(x + keyshaftw, y, cy, canvas)
# Rectangle for the key shaft, extended at the bottom for the
# key head detail.
for x in range(int(keyshaftw)):
top = round((keyheadh - keyshafth) / 2)
bot = round((keyheadh + keyshafth) / 2)
xs = float(x) * (len(keyhead)-1) / round((len(keyhead)-1)*size)
xf = math.floor(xs)
xc = math.ceil(xs)
in_head = 0
if xc < len(keyhead):
in_head = 1
yf = keyhead[int(xf)]
yc = keyhead[int(xc)]
if xf == xc:
bot = yf
else:
bot = yf * (xc-xs) + yc * (xs-xf)
for y in range(int(top),int(bot)):
pixel(x, y, cy, canvas)
if in_head:
last = (x, y)
if x == 0:
squarepix.append((x, int(top), TL))
if x == 0:
squarepix.append(last + (BL,))
if last != None and not in_head:
squarepix.append(last + (BR,))
last = None
# And draw a border.
border(canvas, size, squarepix)
return canvas
def linedist(x1,y1, x2,y2, x,y):
# Compute the distance from the point x,y to the line segment
# joining x1,y1 to x2,y2. Returns the distance vector, measured
# with x,y at the origin.
vectors = []
# Special case: if x1,y1 and x2,y2 are the same point, we
# don't attempt to extrapolate it into a line at all.
if x1 != x2 or y1 != y2:
# First, find the nearest point to x,y on the infinite
# projection of the line segment. So we construct a vector
# n perpendicular to that segment...
nx = y2-y1
ny = x1-x2
# ... compute the dot product of (x1,y1)-(x,y) with that
# vector...
nd = (x1-x)*nx + (y1-y)*ny
# ... multiply by the vector we first thought of...
ndx = nd * nx
ndy = nd * ny
# ... and divide twice by the length of n.
ndx = ndx / (nx*nx+ny*ny)
ndy = ndy / (nx*nx+ny*ny)
# That gives us a displacement vector from x,y to the
# nearest point. See if it's within the range of the line
# segment.
cx = x + ndx
cy = y + ndy
if cx >= min(x1,x2) and cx <= max(x1,x2) and \
cy >= min(y1,y2) and cy <= max(y1,y2):
vectors.append((ndx,ndy))
# Now we have up to three candidate result vectors: (ndx,ndy)
# as computed just above, and the two vectors to the ends of
# the line segment, (x1-x,y1-y) and (x2-x,y2-y). Pick the
# shortest.
vectors = vectors + [(x1-x,y1-y), (x2-x,y2-y)]
bestlen, best = None, None
for v in vectors:
vlen = v[0]*v[0]+v[1]*v[1]
if bestlen == None or bestlen > vlen:
bestlen = vlen
best = v
return best
def spanner(size):
canvas = {}
# The spanner in the config box icon.
headcentre = 0.5 + round(4*size)
headradius = headcentre + 0.1
headhighlight = round(1.5*size)
holecentre = 0.5 + round(3*size)
holeradius = round(2*size)
holehighlight = round(1.5*size)
shaftend = 0.5 + round(25*size)
shaftwidth = round(2*size)
shafthighlight = round(1.5*size)
cmax = shaftend + shaftwidth
# Define three line segments, such that the shortest distance
# vectors from any point to each of these segments determines
# everything we need to know about where it is on the spanner
# shape.
segments = [
((0,0), (holecentre, holecentre)),
((headcentre, headcentre), (headcentre, headcentre)),
((headcentre+headradius/math.sqrt(2), headcentre+headradius/math.sqrt(2)),
(cmax, cmax))
]
for y in range(int(cmax)):
for x in range(int(cmax)):
vectors = [linedist(a,b,c,d,x,y) for ((a,b),(c,d)) in segments]
dists = [memoisedsqrt(vx*vx+vy*vy) for (vx,vy) in vectors]
# If the distance to the hole line is less than
# holeradius, we're not part of the spanner.
if dists[0] < holeradius:
continue
# If the distance to the head `line' is less than
# headradius, we are part of the spanner; likewise if
# the distance to the shaft line is less than
# shaftwidth _and_ the resulting shaft point isn't
# beyond the shaft end.
if dists[1] > headradius and \
(dists[2] > shaftwidth or x+vectors[2][0] >= shaftend):
continue
# We're part of the spanner. Now compute the highlight
# on this pixel. We do this by computing a `slope
# vector', which points from this pixel in the
# direction of its nearest edge. We store an array of
# slope vectors, in polar coordinates.
angles = [math.atan2(vy,vx) for (vx,vy) in vectors]
slopes = []
if dists[0] < holeradius + holehighlight:
slopes.append(((dists[0]-holeradius)/holehighlight,angles[0]))
if dists[1]/headradius < dists[2]/shaftwidth:
if dists[1] > headradius - headhighlight and dists[1] < headradius:
slopes.append(((headradius-dists[1])/headhighlight,math.pi+angles[1]))
else:
if dists[2] > shaftwidth - shafthighlight and dists[2] < shaftwidth:
slopes.append(((shaftwidth-dists[2])/shafthighlight,math.pi+angles[2]))
# Now we find the smallest distance in that array, if
# any, and that gives us a notional position on a
# sphere which we can use to compute the final
# highlight level.
bestdist = None
bestangle = 0
for dist, angle in slopes:
if bestdist == None or bestdist > dist:
bestdist = dist
bestangle = angle
if bestdist == None:
bestdist = 1.0
sx = (1.0-bestdist) * math.cos(bestangle)
sy = (1.0-bestdist) * math.sin(bestangle)
sz = math.sqrt(1.0 - sx*sx - sy*sy)
shade = sx-sy+sz / math.sqrt(3) # can range from -1 to +1
shade = 1.0 - (1-shade)/3
pixel(x, y, yellowpix(shade), canvas)
# And draw a border.
border(canvas, size, [])
return canvas
def box(size, back):
canvas = {}
# The back side of the cardboard box in the installer icon.
boxwidth = round(15 * size)
boxheight = round(12 * size)
boxdepth = round(4 * size)
boxfrontflapheight = round(5 * size)
boxrightflapheight = round(3 * size)
# Three shades of basically acceptable brown, all achieved by
# halftoning between two of the Windows-16 colours. I'm quite
# pleased that was feasible at all!
dark = halftone(cr, cK)
med = halftone(cr, cy)
light = halftone(cr, cY)
# We define our halftoning parity in such a way that the black
# pixels along the RHS of the visible part of the box back
# match up with the one-pixel black outline around the
# right-hand side of the box. In other words, we want the pixel
# at (-1, boxwidth-1) to be black, and hence the one at (0,
# boxwidth) too.
parityadjust = int(boxwidth) % 2
# The entire back of the box.
if back:
for x in range(int(boxwidth + boxdepth)):
ytop = max(-x-1, -boxdepth-1)
ybot = min(boxheight, boxheight+boxwidth-1-x)
for y in range(int(ytop), int(ybot)):
pixel(x, y, dark[(x+y+parityadjust) % 2], canvas)
# Even when drawing the back of the box, we still draw the
# whole shape, because that means we get the right overall size
# (the flaps make the box front larger than the box back) and
# it'll all be overwritten anyway.
# The front face of the box.
for x in range(int(boxwidth)):
for y in range(int(boxheight)):
pixel(x, y, med[(x+y+parityadjust) % 2], canvas)
# The right face of the box.
for x in range(int(boxwidth), int(boxwidth+boxdepth)):
ybot = boxheight + boxwidth-x
ytop = ybot - boxheight
for y in range(int(ytop), int(ybot)):
pixel(x, y, dark[(x+y+parityadjust) % 2], canvas)
# The front flap of the box.
for y in range(int(boxfrontflapheight)):
xadj = int(round(-0.5*y))
for x in range(int(xadj), int(xadj+boxwidth)):
pixel(x, y, light[(x+y+parityadjust) % 2], canvas)
# The right flap of the box.
for x in range(int(boxwidth), int(boxwidth + boxdepth + boxrightflapheight + 1)):
ytop = max(boxwidth - 1 - x, x - boxwidth - 2*boxdepth - 1)
ybot = min(x - boxwidth - 1, boxwidth + 2*boxrightflapheight - 1 - x)
for y in range(int(ytop), int(ybot+1)):
pixel(x, y, med[(x+y+parityadjust) % 2], canvas)
# And draw a border.
border(canvas, size, [(0, int(boxheight)-1, BL)])
return canvas
def boxback(size):
return box(size, 1)
def boxfront(size):
return box(size, 0)
# Functions to draw entire icons by composing the above components.
def xybolt(c1, c2, size, boltoffx=0, boltoffy=0, aux={}):
# Two unspecified objects and a lightning bolt.
canvas = {}
w = h = round(32 * size)
bolt = lightning(size)
# Position c2 against the top right of the icon.
bb = bbox(c2)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(c2, w-bb[2], 0-bb[1], canvas)
aux["c2pos"] = (w-bb[2], 0-bb[1])
# Position c1 against the bottom left of the icon.
bb = bbox(c1)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(c1, 0-bb[0], h-bb[3], canvas)
aux["c1pos"] = (0-bb[0], h-bb[3])
# Place the lightning bolt artistically off-centre. (The
# rationale for this positioning is that it's centred on the
# midpoint between the centres of the two monitors in the PuTTY
# icon proper, but it's not really feasible to _base_ the
# calculation here on that.)
bb = bbox(bolt)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(bolt, (w-bb[0]-bb[2])/2 + round(boltoffx*size), \
(h-bb[1]-bb[3])/2 + round((boltoffy-2)*size), canvas)
return canvas
def putty_icon(size):
return xybolt(computer(size), computer(size), size)
def puttycfg_icon(size):
w = h = round(32 * size)
s = spanner(size)
canvas = putty_icon(size)
# Centre the spanner.
bb = bbox(s)
overlay(s, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
return canvas
def puttygen_icon(size):
return xybolt(computer(size), key(size), size, boltoffx=2)
def pscp_icon(size):
return xybolt(document(size), computer(size), size)
def puttyins_icon(size):
aret = {}
# The box back goes behind the lightning bolt.
canvas = xybolt(boxback(size), computer(size), size, boltoffx=-2, boltoffy=+1, aux=aret)
# But the box front goes over the top, so that the lightning
# bolt appears to come _out_ of the box. Here it's useful to
# know the exact coordinates where xybolt placed the box back,
# so we can overlay the box front exactly on top of it.
c1x, c1y = aret["c1pos"]
overlay(boxfront(size), c1x, c1y, canvas)
return canvas
def pterm_icon(size):
# Just a really big computer.
canvas = {}
w = h = round(32 * size)
c = computer(size * 1.4)
# Centre c in the return canvas.
bb = bbox(c)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(c, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
return canvas
def ptermcfg_icon(size):
w = h = round(32 * size)
s = spanner(size)
canvas = pterm_icon(size)
# Centre the spanner.
bb = bbox(s)
overlay(s, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
return canvas
def pageant_icon(size):
# A biggish computer, in a hat.
canvas = {}
w = h = round(32 * size)
c = computer(size * 1.2)
ht = hat(size)
cbb = bbox(c)
hbb = bbox(ht)
# Determine the relative y-coordinates of the computer and hat.
# We just centre the one on the other.
xrel = (cbb[0]+cbb[2]-hbb[0]-hbb[2])/2
# Determine the relative y-coordinates of the computer and hat.
# We do this by sitting the hat as low down on the computer as
# possible without any computer showing over the top. To do
# this we first have to find the minimum x coordinate at each
# y-coordinate of both components.
cty = topy(c)
hty = topy(ht)
yrelmin = None
for cx in cty.keys():
hx = cx - xrel
assert hty.has_key(hx)
yrel = cty[cx] - hty[hx]
if yrelmin == None:
yrelmin = yrel
else:
yrelmin = min(yrelmin, yrel)
# Overlay the hat on the computer.
overlay(ht, xrel, yrelmin, c)
# And centre the result in the main icon canvas.
bb = bbox(c)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(c, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
return canvas
# Test and output functions.
import os
import sys
def testrun(func, fname):
canvases = []
for size in [0.5, 0.6, 1.0, 1.2, 1.5, 4.0]:
canvases.append(func(size))
wid = 0
ht = 0
for canvas in canvases:
minx, miny, maxx, maxy = bbox(canvas)
wid = max(wid, maxx-minx+4)
ht = ht + maxy-miny+4
block = []
for canvas in canvases:
minx, miny, maxx, maxy = bbox(canvas)
block.extend(render(canvas, minx-2, miny-2, minx-2+wid, maxy+2))
p = os.popen("convert -depth 8 -size %dx%d rgb:- %s" % (wid,ht,fname), "w")
assert len(block) == ht
for line in block:
assert len(line) == wid
for r, g, b, a in line:
# Composite on to orange.
r = int(round((r * a + 255 * (255-a)) / 255.0))
g = int(round((g * a + 128 * (255-a)) / 255.0))
b = int(round((b * a + 0 * (255-a)) / 255.0))
p.write("%c%c%c" % (r,g,b))
p.close()
def drawicon(func, width, fname, orangebackground = 0):
canvas = func(width / 32.0)
finalise(canvas)
minx, miny, maxx, maxy = bbox(canvas)
assert minx >= 0 and miny >= 0 and maxx <= width and maxy <= width
block = render(canvas, 0, 0, width, width)
p = os.popen("convert -depth 8 -size %dx%d rgba:- %s" % (width,width,fname), "w")
assert len(block) == width
for line in block:
assert len(line) == width
for r, g, b, a in line:
if orangebackground:
# Composite on to orange.
r = int(round((r * a + 255 * (255-a)) / 255.0))
g = int(round((g * a + 128 * (255-a)) / 255.0))
b = int(round((b * a + 0 * (255-a)) / 255.0))
a = 255
p.write("%c%c%c%c" % (r,g,b,a))
p.close()
args = sys.argv[1:]
orangebackground = test = 0
colours = 1 # 0=mono, 1=16col, 2=truecol
doingargs = 1
realargs = []
for arg in args:
if doingargs and arg[0] == "-":
if arg == "-t":
test = 1
elif arg == "-it":
orangebackground = 1
elif arg == "-2":
colours = 0
elif arg == "-T":
colours = 2
elif arg == "--":
doingargs = 0
else:
sys.stderr.write("unrecognised option '%s'\n" % arg)
sys.exit(1)
else:
realargs.append(arg)
if colours == 0:
# Monochrome.
cK=cr=cg=cb=cm=cc=cP=cw=cR=cG=cB=cM=cC=cD = 0
cY=cy=cW = 1
cT = -1
def greypix(value):
return [cK,cW][int(round(value))]
def yellowpix(value):
return [cK,cW][int(round(value))]
def bluepix(value):
return cK
def dark(value):
return [cT,cK][int(round(value))]
def blend(col1, col2):
if col1 == cT:
return col2
else:
return col1
pixvals = [
(0x00, 0x00, 0x00, 0xFF), # cK
(0xFF, 0xFF, 0xFF, 0xFF), # cW
(0x00, 0x00, 0x00, 0x00), # cT
]
def outpix(colour):
return pixvals[colour]
def finalisepix(colour):
return colour
def halftone(col1, col2):
return (col1, col2)
elif colours == 1:
# Windows 16-colour palette.
cK,cr,cg,cy,cb,cm,cc,cP,cw,cR,cG,cY,cB,cM,cC,cW = range(16)
cT = -1
cD = -2 # special translucent half-darkening value used internally
def greypix(value):
return [cK,cw,cw,cP,cW][int(round(4*value))]
def yellowpix(value):
return [cK,cy,cY][int(round(2*value))]
def bluepix(value):
return [cK,cb,cB][int(round(2*value))]
def dark(value):
return [cT,cD,cK][int(round(2*value))]
def blend(col1, col2):
if col1 == cT:
return col2
elif col1 == cD:
return [cK,cK,cK,cK,cK,cK,cK,cw,cK,cr,cg,cy,cb,cm,cc,cw,cD,cD][col2]