forked from sigrokproject/libsigrok
-
Notifications
You must be signed in to change notification settings - Fork 2
/
analog.c
714 lines (645 loc) · 17.8 KB
/
analog.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
/** @cond PRIVATE */
#define LOG_PREFIX "analog"
/** @endcond */
/**
* @file
*
* Handling and converting analog data.
*/
/**
* @defgroup grp_analog Analog data handling
*
* Handling and converting analog data.
*
* @{
*/
struct unit_mq_string {
uint64_t value;
const char *str;
};
/* Please use the same order as in enum sr_unit (libsigrok.h). */
static struct unit_mq_string unit_strings[] = {
{ SR_UNIT_VOLT, "V" },
{ SR_UNIT_AMPERE, "A" },
{ SR_UNIT_OHM, "\xe2\x84\xa6" },
{ SR_UNIT_FARAD, "F" },
{ SR_UNIT_KELVIN, "K" },
{ SR_UNIT_CELSIUS, "\xc2\xb0""C" },
{ SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
{ SR_UNIT_HERTZ, "Hz" },
{ SR_UNIT_PERCENTAGE, "%" },
{ SR_UNIT_BOOLEAN, "" },
{ SR_UNIT_SECOND, "s" },
{ SR_UNIT_SIEMENS, "S" },
{ SR_UNIT_DECIBEL_MW, "dBm" },
{ SR_UNIT_DECIBEL_VOLT, "dBV" },
{ SR_UNIT_UNITLESS, "" },
{ SR_UNIT_DECIBEL_SPL, "dB" },
{ SR_UNIT_CONCENTRATION, "ppm" },
{ SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
{ SR_UNIT_VOLT_AMPERE, "VA" },
{ SR_UNIT_WATT, "W" },
{ SR_UNIT_WATT_HOUR, "Wh" },
{ SR_UNIT_METER_SECOND, "m/s" },
{ SR_UNIT_HECTOPASCAL, "hPa" },
{ SR_UNIT_HUMIDITY_293K, "%rF" },
{ SR_UNIT_DEGREE, "\xc2\xb0" },
{ SR_UNIT_HENRY, "H" },
{ SR_UNIT_GRAM, "g" },
{ SR_UNIT_CARAT, "ct" },
{ SR_UNIT_OUNCE, "oz" },
{ SR_UNIT_TROY_OUNCE, "oz t" },
{ SR_UNIT_POUND, "lb" },
{ SR_UNIT_PENNYWEIGHT, "dwt" },
{ SR_UNIT_GRAIN, "gr" },
{ SR_UNIT_TAEL, "tael" },
{ SR_UNIT_MOMME, "momme" },
{ SR_UNIT_TOLA, "tola" },
{ SR_UNIT_PIECE, "pcs" },
{ SR_UNIT_JOULE, "J" },
{ SR_UNIT_COULOMB, "C" },
{ SR_UNIT_AMPERE_HOUR, "Ah" },
ALL_ZERO
};
/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
static struct unit_mq_string mq_strings[] = {
{ SR_MQFLAG_AC, " AC" },
{ SR_MQFLAG_DC, " DC" },
{ SR_MQFLAG_RMS, " RMS" },
{ SR_MQFLAG_DIODE, " DIODE" },
{ SR_MQFLAG_HOLD, " HOLD" },
{ SR_MQFLAG_MAX, " MAX" },
{ SR_MQFLAG_MIN, " MIN" },
{ SR_MQFLAG_AUTORANGE, " AUTO" },
{ SR_MQFLAG_RELATIVE, " REL" },
{ SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
{ SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
{ SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
{ SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
{ SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
{ SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
{ SR_MQFLAG_SPL_LAT, " LAT" },
/* Not a standard function for SLMs, so this is a made-up notation. */
{ SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
{ SR_MQFLAG_DURATION, " DURATION" },
{ SR_MQFLAG_AVG, " AVG" },
{ SR_MQFLAG_REFERENCE, " REF" },
{ SR_MQFLAG_UNSTABLE, " UNSTABLE" },
{ SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
ALL_ZERO
};
/** @private */
SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
struct sr_analog_encoding *encoding,
struct sr_analog_meaning *meaning,
struct sr_analog_spec *spec,
int digits)
{
memset(analog, 0, sizeof(*analog));
memset(encoding, 0, sizeof(*encoding));
memset(meaning, 0, sizeof(*meaning));
memset(spec, 0, sizeof(*spec));
analog->encoding = encoding;
analog->meaning = meaning;
analog->spec = spec;
encoding->unitsize = sizeof(float);
encoding->is_float = TRUE;
#ifdef WORDS_BIGENDIAN
encoding->is_bigendian = TRUE;
#else
encoding->is_bigendian = FALSE;
#endif
encoding->digits = digits;
encoding->is_digits_decimal = TRUE;
encoding->scale.p = 1;
encoding->scale.q = 1;
encoding->offset.p = 0;
encoding->offset.q = 1;
spec->spec_digits = digits;
return SR_OK;
}
/**
* Convert an analog datafeed payload to an array of floats.
*
* The caller must provide the #outbuf space for the conversion result,
* and is expected to free allocated space after use.
*
* @param[in] analog The analog payload to convert. Must not be NULL.
* analog->data, analog->meaning, and analog->encoding
* must not be NULL.
* @param[out] outbuf Memory where to store the result. Must not be NULL.
*
* @retval SR_OK Success.
* @retval SR_ERR Unsupported encoding.
* @retval SR_ERR_ARG Invalid argument.
*
* @since 0.4.0
*/
SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
float *outbuf)
{
size_t count;
gboolean host_bigendian;
gboolean input_float, input_signed, input_bigendian;
size_t input_unitsize;
double scale, offset, value;
const uint8_t *data8;
gboolean input_is_native;
char type_text[10];
if (!analog || !analog->data || !analog->meaning || !analog->encoding)
return SR_ERR_ARG;
if (!outbuf)
return SR_ERR_ARG;
count = analog->num_samples * g_slist_length(analog->meaning->channels);
/*
* Determine properties of the input data's and the host's
* native formats, to simplify test conditions below.
* Error messages for unsupported input property combinations
* will only be seen by developers and maintainers of input
* formats or acquisition device drivers. Terse output is
* acceptable there, users shall never see them.
*/
#ifdef WORDS_BIGENDIAN
host_bigendian = TRUE;
#else
host_bigendian = FALSE;
#endif
input_float = analog->encoding->is_float;
input_signed = analog->encoding->is_signed;
input_bigendian = analog->encoding->is_bigendian;
input_unitsize = analog->encoding->unitsize;
/*
* Prepare the iteration over the sample data: Get the common
* scale/offset factors which apply to all individual values.
* Position the read pointer on the first byte of input data.
*/
offset = analog->encoding->offset.p;
offset /= analog->encoding->offset.q;
scale = analog->encoding->scale.p;
scale /= analog->encoding->scale.q;
data8 = analog->data;
/*
* Immediately handle the special case where input data needs
* no conversion because it already is in the application's
* native format. Do apply scale/offset though when applicable
* on our way out.
*/
input_is_native = input_float &&
input_unitsize == sizeof(outbuf[0]) &&
input_bigendian == host_bigendian;
if (input_is_native) {
memcpy(outbuf, data8, count * sizeof(outbuf[0]));
if (scale != 1.0 || offset != 0.0) {
while (count--) {
*outbuf *= scale;
*outbuf += offset;
outbuf++;
}
}
return SR_OK;
}
/*
* Accept sample values in different widths and data types and
* endianess formats (floating point or signed or unsigned
* integer, in either endianess, for a set of supported widths).
* Common scale/offset factors apply to all sample values.
*
* Do most internal calculations on double precision values.
* Only trim the result data to single precision, since that's
* the routine's result data type in its public API which needs
* to be kept for compatibility. It remains an option for later
* to add another public routine which returns double precision
* result data, call sites could migrate at their own pace.
*/
if (input_float && input_unitsize == sizeof(float)) {
float (*reader)(const uint8_t **p);
if (input_bigendian)
reader = read_fltbe_inc;
else
reader = read_fltle_inc;
while (count--) {
value = reader(&data8);
value *= scale;
value += offset;
*outbuf++ = value;
}
return SR_OK;
}
if (input_float && input_unitsize == sizeof(double)) {
double (*reader)(const uint8_t **p);
if (input_bigendian)
reader = read_dblbe_inc;
else
reader = read_dblle_inc;
while (count--) {
value = reader(&data8);
value *= scale;
value += offset;
*outbuf++ = value;
}
return SR_OK;
}
if (input_float) {
snprintf(type_text, sizeof(type_text), "%c%zu%s",
'f', input_unitsize * 8, input_bigendian ? "be" : "le");
sr_err("Unsupported type for analog-to-float conversion: %s.",
type_text);
return SR_ERR;
}
if (input_unitsize == sizeof(uint8_t) && input_signed) {
int8_t (*reader)(const uint8_t **p);
reader = read_i8_inc;
while (count--) {
value = reader(&data8);
value *= scale;
value += offset;
*outbuf++ = value;
}
return SR_OK;
}
if (input_unitsize == sizeof(uint8_t)) {
uint8_t (*reader)(const uint8_t **p);
reader = read_u8_inc;
while (count--) {
value = reader(&data8);
value *= scale;
value += offset;
*outbuf++ = value;
}
return SR_OK;
}
if (input_unitsize == sizeof(uint16_t) && input_signed) {
int16_t (*reader)(const uint8_t **p);
if (input_bigendian)
reader = read_i16be_inc;
else
reader = read_i16le_inc;
while (count--) {
value = reader(&data8);
value *= scale;
value += offset;
*outbuf++ = value;
}
return SR_OK;
}
if (input_unitsize == sizeof(uint16_t)) {
uint16_t (*reader)(const uint8_t **p);
if (input_bigendian)
reader = read_u16be_inc;
else
reader = read_u16le_inc;
while (count--) {
value = reader(&data8);
value *= scale;
value += offset;
*outbuf++ = value;
}
return SR_OK;
}
if (input_unitsize == sizeof(uint32_t) && input_signed) {
int32_t (*reader)(const uint8_t **p);
if (input_bigendian)
reader = read_i32be_inc;
else
reader = read_i32le_inc;
while (count--) {
value = reader(&data8);
value *= scale;
value += offset;
*outbuf++ = value;
}
return SR_OK;
}
if (input_unitsize == sizeof(uint32_t)) {
uint32_t (*reader)(const uint8_t **p);
if (input_bigendian)
reader = read_u32be_inc;
else
reader = read_u32le_inc;
while (count--) {
value = reader(&data8);
value *= scale;
value += offset;
*outbuf++ = value;
}
return SR_OK;
}
snprintf(type_text, sizeof(type_text), "%c%zu%s",
input_float ? 'f' : input_signed ? 'i' : 'u',
input_unitsize * 8, input_bigendian ? "be" : "le");
sr_err("Unsupported type for analog-to-float conversion: %s.",
type_text);
return SR_ERR;
}
/**
* Scale a float value to the appropriate SI prefix.
*
* @param[in,out] value The float value to convert to appropriate SI prefix.
* @param[in,out] digits The number of significant decimal digits in value.
*
* @return The SI prefix to which value was scaled, as a printable string.
*
* @since 0.5.0
*/
SR_API const char *sr_analog_si_prefix(float *value, int *digits)
{
/** @cond PRIVATE */
#define NEG_PREFIX_COUNT 5 /* number of prefixes below unity */
#define POS_PREFIX_COUNT (int)(ARRAY_SIZE(prefixes) - NEG_PREFIX_COUNT - 1)
/** @endcond */
static const char *prefixes[] = { "f", "p", "n", "µ", "m", "", "k", "M", "G", "T" };
if (!value || !digits || isnan(*value))
return prefixes[NEG_PREFIX_COUNT];
float logval = log10f(fabsf(*value));
int prefix = (logval / 3) - (logval < 1);
if (prefix < -NEG_PREFIX_COUNT)
prefix = -NEG_PREFIX_COUNT;
if (3 * prefix < -*digits)
prefix = (-*digits + 2 * (*digits < 0)) / 3;
if (prefix > POS_PREFIX_COUNT)
prefix = POS_PREFIX_COUNT;
*value *= powf(10, -3 * prefix);
*digits += 3 * prefix;
return prefixes[prefix + NEG_PREFIX_COUNT];
}
/**
* Check if a unit "accepts" an SI prefix.
*
* E.g. SR_UNIT_VOLT is SI prefix friendly while SR_UNIT_DECIBEL_MW or
* SR_UNIT_PERCENTAGE are not.
*
* @param[in] unit The unit to check for SI prefix "friendliness".
*
* @return TRUE if the unit "accept" an SI prefix.
*
* @since 0.5.0
*/
SR_API gboolean sr_analog_si_prefix_friendly(enum sr_unit unit)
{
static const enum sr_unit prefix_friendly_units[] = {
SR_UNIT_VOLT,
SR_UNIT_AMPERE,
SR_UNIT_OHM,
SR_UNIT_FARAD,
SR_UNIT_KELVIN,
SR_UNIT_HERTZ,
SR_UNIT_SECOND,
SR_UNIT_SIEMENS,
SR_UNIT_VOLT_AMPERE,
SR_UNIT_WATT,
SR_UNIT_WATT_HOUR,
SR_UNIT_METER_SECOND,
SR_UNIT_HENRY,
SR_UNIT_GRAM
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(prefix_friendly_units); i++)
if (unit == prefix_friendly_units[i])
return TRUE;
return FALSE;
}
/**
* Convert the unit/MQ/MQ flags in the analog struct to a string.
*
* The string is allocated by the function and must be freed by the caller
* after use by calling g_free().
*
* @param[in] analog Struct containing the unit, MQ and MQ flags.
* Must not be NULL. analog->meaning must not be NULL.
* @param[out] result Pointer to store result. Must not be NULL.
*
* @retval SR_OK Success.
* @retval SR_ERR_ARG Invalid argument.
*
* @since 0.4.0
*/
SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
char **result)
{
int i;
GString *buf;
if (!analog || !(analog->meaning) || !result)
return SR_ERR_ARG;
buf = g_string_new(NULL);
for (i = 0; unit_strings[i].value; i++) {
if (analog->meaning->unit == unit_strings[i].value) {
g_string_assign(buf, unit_strings[i].str);
break;
}
}
/* More than one MQ flag may apply. */
for (i = 0; mq_strings[i].value; i++)
if (analog->meaning->mqflags & mq_strings[i].value)
g_string_append(buf, mq_strings[i].str);
*result = g_string_free(buf, FALSE);
return SR_OK;
}
/**
* Set sr_rational r to the given value.
*
* @param[out] r Rational number struct to set. Must not be NULL.
* @param[in] p Numerator.
* @param[in] q Denominator.
*
* @since 0.4.0
*/
SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
{
if (!r)
return;
r->p = p;
r->q = q;
}
#ifndef HAVE___INT128_T
struct sr_int128_t {
int64_t high;
uint64_t low;
};
struct sr_uint128_t {
uint64_t high;
uint64_t low;
};
static void mult_int64(struct sr_int128_t *res, const int64_t a,
const int64_t b)
{
uint64_t t1, t2, t3, t4;
t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
t2 = (UINT32_MAX & a) * (b >> 32);
t3 = (a >> 32) * (UINT32_MAX & b);
t4 = (a >> 32) * (b >> 32);
res->low = t1 + (t2 << 32) + (t3 << 32);
res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
res->high >>= 32;
res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
}
static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
const uint64_t b)
{
uint64_t t1, t2, t3, t4;
// (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
t2 = (UINT32_MAX & a) * (b >> 32);
t3 = (a >> 32) * (UINT32_MAX & b);
t4 = (a >> 32) * (b >> 32);
res->low = t1 + (t2 << 32) + (t3 << 32);
res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
res->high >>= 32;
res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
}
#endif
/**
* Compare two sr_rational for equality.
*
* The values are compared for numerical equality, i.e. 2/10 == 1/5.
*
* @param[in] a First value.
* @param[in] b Second value.
*
* @retval 1 if both values are equal.
* @retval 0 Otherwise.
*
* @since 0.5.0
*/
SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
{
#ifdef HAVE___INT128_T
__int128_t m1, m2;
/* p1/q1 = p2/q2 <=> p1*q2 = p2*q1 */
m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);
return (m1 == m2);
#else
struct sr_int128_t m1, m2;
mult_int64(&m1, a->q, b->p);
mult_int64(&m2, a->p, b->q);
return (m1.high == m2.high) && (m1.low == m2.low);
#endif
}
/**
* Multiply two sr_rational.
*
* The resulting nominator/denominator are reduced if the result would not fit
* otherwise. If the resulting nominator/denominator are relatively prime,
* this may not be possible.
*
* It is safe to use the same variable for result and input values.
*
* @param[in] a First value.
* @param[in] b Second value.
* @param[out] res Result.
*
* @retval SR_OK Success.
* @retval SR_ERR_ARG Resulting value too large.
*
* @since 0.5.0
*/
SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
const struct sr_rational *b)
{
#ifdef HAVE___INT128_T
__int128_t p;
__uint128_t q;
p = (__int128_t)(a->p) * (__int128_t)(b->p);
q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
while (!((p & 1) || (q & 1))) {
p /= 2;
q /= 2;
}
}
if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
// TODO: determine gcd to do further reduction
return SR_ERR_ARG;
}
res->p = (int64_t)p;
res->q = (uint64_t)q;
return SR_OK;
#else
struct sr_int128_t p;
struct sr_uint128_t q;
mult_int64(&p, a->p, b->p);
mult_uint64(&q, a->q, b->q);
while (!(p.low & 1) && !(q.low & 1)) {
p.low /= 2;
if (p.high & 1)
p.low |= (1ll << 63);
p.high >>= 1;
q.low /= 2;
if (q.high & 1)
q.low |= (1ll << 63);
q.high >>= 1;
}
if (q.high)
return SR_ERR_ARG;
if ((p.high >= 0) && (p.low > INT64_MAX))
return SR_ERR_ARG;
if (p.high < -1)
return SR_ERR_ARG;
res->p = (int64_t)p.low;
res->q = q.low;
return SR_OK;
#endif
}
/**
* Divide rational a by rational b.
*
* The resulting nominator/denominator are reduced if the result would not fit
* otherwise. If the resulting nominator/denominator are relatively prime,
* this may not be possible.
*
* It is safe to use the same variable for result and input values.
*
* @param[in] num Numerator.
* @param[in] div Divisor.
* @param[out] res Result.
*
* @retval SR_OK Success.
* @retval SR_ERR_ARG Division by zero, denominator of divisor too large,
* or resulting value too large.
*
* @since 0.5.0
*/
SR_API int sr_rational_div(struct sr_rational *res, const struct sr_rational *num,
const struct sr_rational *div)
{
struct sr_rational t;
if (div->q > INT64_MAX)
return SR_ERR_ARG;
if (div->p == 0)
return SR_ERR_ARG;
if (div->p > 0) {
t.p = div->q;
t.q = div->p;
} else {
t.p = -div->q;
t.q = -div->p;
}
return sr_rational_mult(res, num, &t);
}
/** @} */