forked from google/prompt-to-prompt
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinversion_utils.py
598 lines (520 loc) · 22.5 KB
/
inversion_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import torch
import os
from tqdm import tqdm
from PIL import Image, ImageDraw, ImageFont
from matplotlib import pyplot as plt
import torchvision.transforms as T
import os
import yaml
import numpy as np
def load_512(image_path, left=0, right=0, top=0, bottom=0, device=None):
if type(image_path) is str:
image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3]
else:
image = image_path
h, w, c = image.shape
left = min(left, w - 1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h - bottom, left:w - right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((512, 512)))
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float16)
return image
def mu_tilde(model, xt, x0, timestep):
"mu_tilde(x_t, x_0) DDPM paper eq. 7"
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t_prev = model.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
alpha_t = model.scheduler.alphas[timestep]
beta_t = 1 - alpha_t
alpha_bar = model.scheduler.alphas_cumprod[timestep]
return ((alpha_prod_t_prev**0.5 * beta_t) /
(1 - alpha_bar)) * x0 + ((alpha_t**0.5 * (1 - alpha_prod_t_prev)) /
(1 - alpha_bar)) * xt
def sample_xts_from_x0(model, x0, num_inference_steps=50):
"""
Samples from P(x_1:T|x_0)
"""
# torch.manual_seed(43256465436)
alpha_bar = model.scheduler.alphas_cumprod
sqrt_one_minus_alpha_bar = (1 - alpha_bar)**0.5
alphas = model.scheduler.alphas
betas = 1 - alphas
variance_noise_shape = (num_inference_steps, model.unet.in_channels,
model.unet.sample_size, model.unet.sample_size)
timesteps = model.scheduler.timesteps.to(model.device)
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xts = torch.zeros(variance_noise_shape).to(x0.device, dtype=torch.float16)
for t in reversed(timesteps): # 1...T
idx = t_to_idx[int(t)]
xts[idx] = x0 * (alpha_bar[t]**0.5) + torch.randn_like(
x0, dtype=torch.float16) * sqrt_one_minus_alpha_bar[t]
xts = torch.cat([xts, x0], dim=0)
return xts
def sample_xts_from_x0_mc(model, x0, num_inference_steps=50):
"""
Samples from P(x_1:T|x_0)
"""
# torch.manual_seed(43256465436)
alpha_bar = model.scheduler.alphas_cumprod
sqrt_one_minus_alpha_bar = (1 - alpha_bar)**0.5
alphas = model.scheduler.alphas
betas = 1 - alphas
variance_noise_shape = (num_inference_steps, model.unet.in_channels,
model.unet.sample_size, model.unet.sample_size)
iid_noises = torch.randn(len(model.scheduler.alphas), *variance_noise_shape[1:], dtype=torch.float16).to(x0.device)
iid_noises = iid_noises * ((betas / alpha_bar)**0.5).unsqueeze(1).unsqueeze(2).unsqueeze(3).to(x0.device)
iid_noises_cumsum = iid_noises.cumsum(dim=0)
noises = iid_noises_cumsum * ((alpha_bar / (1 - alpha_bar))**0.5).unsqueeze(1).unsqueeze(2).unsqueeze(3).to(x0.device)
timesteps = model.scheduler.timesteps.to(model.device)
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xts = torch.zeros(variance_noise_shape).to(x0.device, dtype=torch.float16)
for t in reversed(timesteps): # 1...T
idx = t_to_idx[int(t)]
xts[idx] = x0 * (alpha_bar[t]**0.5) + noises[t].unsqueeze(0) * sqrt_one_minus_alpha_bar[t]
xts = torch.cat([xts, x0], dim=0)
return xts
def encode_text(model, prompts):
text_input = model.tokenizer(
prompts,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
with torch.no_grad():
text_encoding = model.text_encoder(
text_input.input_ids.to(model.device))[0]
return text_encoding
def forward_step(model, model_output, timestep, sample):
next_timestep = min(
model.scheduler.config.num_train_timesteps - 2,
timestep + model.scheduler.config.num_train_timesteps //
model.scheduler.num_inference_steps)
# 2. compute alphas, betas
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
# alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t**
(0.5) * model_output) / alpha_prod_t**(0.5)
# 5. TODO: simple noising implementatiom
next_sample = model.scheduler.add_noise(pred_original_sample, model_output,
torch.LongTensor([next_timestep]))
return next_sample
def get_variance(model, timestep): #, prev_timestep):
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = model.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev /
beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
@torch.no_grad()
def inversion_forward_process(model,
x0,
etas=None,
prog_bar=False,
prompt="",
cfg_scale=3.5,
num_inference_steps=50,
eps=None,
correlated_noise=False,):
if not prompt == "":
text_embeddings = encode_text(model, prompt)
uncond_embedding = encode_text(model, "")
timesteps = model.scheduler.timesteps.to(model.device)
variance_noise_shape = (num_inference_steps, model.unet.in_channels,
model.unet.sample_size, model.unet.sample_size)
if etas is None or (type(etas) in [int, float] and etas == 0):
eta_is_zero = True
zs = None
else:
eta_is_zero = False
if type(etas) in [int, float]:
etas = [etas] * model.scheduler.num_inference_steps
if not correlated_noise:
xts = sample_xts_from_x0(
model,
x0,
num_inference_steps=num_inference_steps)
else:
xts = sample_xts_from_x0_mc(
model,
x0,
num_inference_steps=num_inference_steps)
alpha_bar = model.scheduler.alphas_cumprod
zs = torch.zeros(size=variance_noise_shape,
device=model.device,
dtype=torch.float16)
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xt = x0
op = tqdm(reversed(timesteps),
desc="Inverting...") if prog_bar else reversed(timesteps)
for t in op:
idx = t_to_idx[int(t)]
# 1. predict noise residual
if not eta_is_zero:
xt = xts[idx][None]
out = model.unet.forward(xt,
timestep=t,
encoder_hidden_states=uncond_embedding)
if not prompt == "":
cond_out = model.unet.forward(
xt, timestep=t, encoder_hidden_states=text_embeddings)
if not prompt == "":
## classifier free guidance
noise_pred = out.sample + cfg_scale * (cond_out.sample -
out.sample)
else:
noise_pred = out.sample
if eta_is_zero:
# 2. compute more noisy image and set x_t -> x_t+1
xt = forward_step(model, noise_pred, t, xt)
else:
xtm1 = xts[idx + 1][None]
# pred of x0
pred_original_sample = (
xt - (1 - alpha_bar[t])**0.5 * noise_pred) / alpha_bar[t]**0.5
# direction to xt
prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t_prev = model.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
variance = get_variance(model, t)
pred_sample_direction = (1 - alpha_prod_t_prev -
etas[idx] * variance)**(0.5) * noise_pred
mu_xt = alpha_prod_t_prev**(
0.5) * pred_original_sample + pred_sample_direction
z = (xtm1 - mu_xt) / (etas[idx] * variance**0.5)
zs[idx] = z
# correction to avoid error accumulation
xtm1 = mu_xt + (etas[idx] * variance**0.5) * z
xts[idx + 1] = xtm1
if not zs is None:
zs[-1] = torch.zeros_like(zs[-1])
return xt, zs, xts
def reverse_step(model,
model_output,
timestep,
sample,
eta=0,
variance_noise=None):
# 1. get previous step value (=t-1)
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = model.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t**
(0.5) * model_output) / alpha_prod_t**(0.5)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
# variance = self.scheduler._get_variance(timestep, prev_timestep)
variance = get_variance(model, timestep) #, prev_timestep)
std_dev_t = eta * variance**(0.5)
# Take care of asymetric reverse process (asyrp)
model_output_direction = model_output
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
pred_sample_direction = (1 - alpha_prod_t_prev -
eta * variance)**(0.5) * model_output_direction
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev**(
0.5) * pred_original_sample + pred_sample_direction
# 8. Add noice if eta > 0
if eta > 0:
if variance_noise is None:
variance_noise = torch.randn(model_output.shape,
device=model.device,
dtype=torch.float16)
sigma_z = eta * variance**(0.5) * variance_noise
prev_sample = prev_sample + sigma_z
return prev_sample
@torch.no_grad()
def inversion_reverse_process(model,
xT,
etas=0,
prompts="",
prompts_null="",
cfg_scales=None,
prog_bar=False,
zs=None,
controller=None,
asyrp=False,
prox=None,
quantile=0.7):
batch_size = len(prompts)
cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1, 1, 1, 1).to(
model.device, dtype=torch.float16)
text_embeddings = encode_text(model, prompts)
# uncond_embedding = encode_text(model, [""] * batch_size)
uncond_embedding = encode_text(model, prompts_null)
if etas is None: etas = 0
if type(etas) in [int, float]:
etas = [etas] * model.scheduler.num_inference_steps
assert len(etas) == model.scheduler.num_inference_steps
timesteps = model.scheduler.timesteps.to(model.device)
xt = xT.expand(batch_size, -1, -1, -1)
op = tqdm(
timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
for t in op:
idx = t_to_idx[int(t)]
## Unconditional embedding
uncond_out = model.unet.forward(xt,
timestep=t,
encoder_hidden_states=uncond_embedding)
## Conditional embedding
if prompts:
cond_out = model.unet.forward(
xt, timestep=t, encoder_hidden_states=text_embeddings)
z = zs[idx] if not zs is None else None
z = z.expand(batch_size, -1, -1, -1)
if prompts:
## classifier free guidance
if prox == 'l0' or prox == 'l1':
score_delta = cond_out.sample - uncond_out.sample
threshold = score_delta.abs().quantile(quantile)
score_delta -= score_delta.clamp(-threshold, threshold)
if prox == 'l1':
score_delta = torch.where(score_delta > 0, score_delta-threshold, score_delta)
score_delta = torch.where(score_delta < 0, score_delta+threshold, score_delta)
noise_pred = uncond_out.sample + cfg_scales_tensor * score_delta
else:
noise_pred = uncond_out.sample + cfg_scales_tensor * (
cond_out.sample - uncond_out.sample)
else:
noise_pred = uncond_out.sample
# 2. compute less noisy image and set x_t -> x_t-1
xt = reverse_step(model,
noise_pred,
t,
xt,
eta=etas[idx],
variance_noise=z)
if controller is not None:
xt = controller.step_callback(xt)
return xt, zs
""" Modified for ELITE
"""
from utils import find_token_indices_batch
@torch.no_grad()
def encode_text_elite(model, prompts, ref_images=None, token_index='0'):
if ref_images is not None:
input_ids = model.tokenizer(
prompts,
padding="max_length",
truncation=True,
max_length=model.tokenizer.model_max_length,
return_tensors="pt",
).input_ids.to(model.device)
ref_images = model.process_images_clip(ref_images)
ref_images = ref_images.to(model.device)
image_features = model.image_encoder(ref_images, output_hidden_states=True)
image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12],
image_features[2][16]]
image_embeddings = [emb.detach() for emb in image_embeddings]
inj_embedding = model.mapper(image_embeddings) # [batch_size, 5, 768]
if token_index != 'full': # NOTE: truncate inj_embedding
if ':' in token_index:
token_index = token_index.split(':')
token_index = slice(int(token_index[0]), int(token_index[1]))
else:
token_index = slice(int(token_index), int(token_index) + 1)
inj_embedding = inj_embedding[:, token_index, :]
placeholder_idx = find_token_indices_batch(model.tokenizer, prompts, "*")
text_encoding = model.text_encoder({
"input_ids": input_ids,
"inj_embedding": inj_embedding,
"inj_index": placeholder_idx})[0]
else:
uncond_input = model.tokenizer(
prompts,
padding="max_length",
max_length=model.tokenizer.model_max_length,
return_tensors="pt",
)
text_encoding = model.text_encoder({'input_ids': uncond_input.input_ids.to(model.device)})[0]
return text_encoding
@torch.no_grad()
def inversion_reverse_process_elite(
model,
xT,
etas=0,
prompts="",
prompts_null="",
ref_image=None,
cfg_scales=None,
prog_bar=False,
zs=None,
controller=None,
asyrp=False,
prox=None,
quantile=0.7
):
batch_size = len(prompts)
cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1, 1, 1, 1).to(
model.device, dtype=torch.float16)
text_embeddings = encode_text_elite(model, prompts, ref_image)
uncond_embedding = encode_text_elite(model, prompts_null, None)
if etas is None: etas = 0
if type(etas) in [int, float]:
etas = [etas] * model.scheduler.num_inference_steps
assert len(etas) == model.scheduler.num_inference_steps
timesteps = model.scheduler.timesteps.to(model.device)
xt = xT.expand(batch_size, -1, -1, -1)
op = tqdm(
timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
for t in op:
idx = t_to_idx[int(t)]
## Unconditional embedding
uncond_out = model.unet.forward(
xt,
timestep=t,
encoder_hidden_states={
"CONTEXT_TENSOR": uncond_embedding,
}
)
## Conditional embedding
if prompts:
cond_out = model.unet.forward(
xt,
timestep=t,
encoder_hidden_states={
"CONTEXT_TENSOR": text_embeddings,
}
)
z = zs[idx] if not zs is None else None
z = z.expand(batch_size, -1, -1, -1)
if prompts:
## classifier free guidance
if prox == 'l0' or prox == 'l1':
score_delta = cond_out.sample - uncond_out.sample
threshold = score_delta.abs().quantile(quantile)
score_delta -= score_delta.clamp(-threshold, threshold)
if prox == 'l1':
score_delta = torch.where(score_delta > 0, score_delta-threshold, score_delta)
score_delta = torch.where(score_delta < 0, score_delta+threshold, score_delta)
noise_pred = uncond_out.sample + cfg_scales_tensor * score_delta
else:
noise_pred = uncond_out.sample + cfg_scales_tensor * (
cond_out.sample - uncond_out.sample)
else:
noise_pred = uncond_out.sample
# 2. compute less noisy image and set x_t -> x_t-1
xt = reverse_step(model,
noise_pred,
t,
xt,
eta=etas[idx],
variance_noise=z)
if controller is not None:
xt = controller.step_callback(xt)
return xt, zs
@torch.no_grad()
def inversion_forward_process_elite(
model,
x0,
etas=None,
prog_bar=False,
prompt="",
ref_image=None,
cfg_scale=3.5,
num_inference_steps=50,
eps=None,
correlated_noise=False,
):
if not prompt == "":
text_embeddings = encode_text_elite(model, prompt, ref_image)
uncond_embedding = encode_text_elite(model, "", None)
timesteps = model.scheduler.timesteps.to(model.device)
variance_noise_shape = (num_inference_steps, model.unet.in_channels,
model.unet.sample_size, model.unet.sample_size)
if etas is None or (type(etas) in [int, float] and etas == 0):
eta_is_zero = True
zs = None
else:
eta_is_zero = False
if type(etas) in [int, float]:
etas = [etas] * model.scheduler.num_inference_steps
if not correlated_noise:
xts = sample_xts_from_x0(
model,
x0,
num_inference_steps=num_inference_steps)
else:
xts = sample_xts_from_x0_mc(
model,
x0,
num_inference_steps=num_inference_steps)
alpha_bar = model.scheduler.alphas_cumprod
zs = torch.zeros(size=variance_noise_shape,
device=model.device,
dtype=torch.float16)
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xt = x0
op = tqdm(reversed(timesteps),
desc="Inverting...") if prog_bar else reversed(timesteps)
for t in op:
idx = t_to_idx[int(t)]
# 1. predict noise residual
if not eta_is_zero:
xt = xts[idx][None]
out = model.unet.forward(
xt,
timestep=t,
encoder_hidden_states={"CONTEXT_TENSOR": uncond_embedding}
)
if not prompt == "":
cond_out = model.unet.forward(
xt,
timestep=t,
encoder_hidden_states={"CONTEXT_TENSOR": text_embeddings}
)
if not prompt == "":
## classifier free guidance
noise_pred = out.sample + cfg_scale * (cond_out.sample -
out.sample)
else:
noise_pred = out.sample
if eta_is_zero:
# 2. compute more noisy image and set x_t -> x_t+1
xt = forward_step(model, noise_pred, t, xt)
else:
xtm1 = xts[idx + 1][None]
# pred of x0
pred_original_sample = (
xt - (1 - alpha_bar[t])**0.5 * noise_pred) / alpha_bar[t]**0.5
# direction to xt
prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t_prev = model.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
variance = get_variance(model, t)
pred_sample_direction = (1 - alpha_prod_t_prev -
etas[idx] * variance)**(0.5) * noise_pred
mu_xt = alpha_prod_t_prev**(
0.5) * pred_original_sample + pred_sample_direction
z = (xtm1 - mu_xt) / (etas[idx] * variance**0.5)
zs[idx] = z
# correction to avoid error accumulation
xtm1 = mu_xt + (etas[idx] * variance**0.5) * z
xts[idx + 1] = xtm1
if not zs is None:
zs[-1] = torch.zeros_like(zs[-1])
return xt, zs, xts